Article

White matter integrity and cognition in chronic traumatic brain injury: a diffusion tensor imaging study

Wayne State University, Detroit, Michigan, United States
Brain (Impact Factor: 10.23). 11/2007; 130(Pt 10):2508-19. DOI: 10.1093/brain/awm216
Source: PubMed

ABSTRACT Traumatic brain injury (TBI) is a serious public health problem. Even injuries classified as mild, the most common, can result in persistent neurobehavioural impairment. Diffuse axonal injury is a common finding after TBI, and is presumed to contribute to outcomes, but may not always be apparent using standard neuroimaging. Diffusion tensor imaging (DTI) is a more recent method of assessing axonal integrity in vivo. The primary objective of the current investigation was to characterize white matter integrity utilizing DTI across the spectrum of chronic TBI of all severities. A secondary objective was to examine the relationship between white matter integrity and cognition. Twenty mild, 17 moderate to severe TBI and 18 controls underwent DTI and neuropsychological testing. Fractional anisotropy, axial diffusivity and radial diffusivity were calculated from the DTI data. Fractional anisotropy was the primary measure of white matter integrity. Region of interest analysis included anterior and posterior corona radiata, cortico-spinal tracts, cingulum fibre bundles, external capsule, forceps minor and major, genu, body and splenium of the corpus callosum, inferior fronto-occipital fasciculus, superior longitudinal fasciculus and sagittal stratum. Cognitive domain scores were calculated from executive, attention and memory testing. Decreased fractional anisotropy was found in all 13 regions of interest for the moderate to severe TBI group, but only in the cortico-spinal tract, sagittal stratum and superior longitudinal fasciculus for the mild TBI group. White Matter Load (a measure of the total number of regions with reduced FA) was negatively correlated with all cognitive domains. Analysis of radial and axial diffusivity values suggested that all severities of TBI can result in a degree of axonal damage, while irreversible myelin damage was only apparent for moderate to severe TBI. The present data emphasize that white matter changes exist on a spectrum, including mild TBI. An index of global white matter neuropathology (White Matter Load) was related to cognitive function, such that greater white matter pathology predicted greater cognitive deficits. Mechanistically, mild TBI white matter changes may be primarily due to axonal damage as opposed to myelin damage. The more severe injuries impact both. DTI provides an objective means for determining the relationship of cognitive deficits to TBI, even in cases where the injury was sustained years prior to the evaluation.

Download full-text

Full-text

Available from: John A Sweeney, Jan 08, 2014
0 Followers
 · 
154 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Blast-related traumatic brain injury (TBI) has been a common injury among returning troops due to the widespread use of improvised explosive devices in the Iraq and Afghanistan Wars. As most of the TBIs sustained are in the mild range, brain changes may not be detected by standard clinical imaging techniques such as CT. Furthermore, the functional significance of these types of injuries is currently being debated. However, accumulating evidence suggests that diffusion tensor imaging (DTI) is sensitive to subtle white matter abnormalities and may be especially useful in detecting mild TBI (mTBI). The primary aim of this study was to use DTI to characterize the nature of white matter abnormalities following blast-related mTBI, and in particular, examine the extent to which mTBI-related white matter abnormalities are region-specific or spatially heterogeneous. In addition, we examined whether mTBI with loss of consciousness (LOC) was associated with more extensive white matter abnormality than mTBI without LOC, as well as the potential moderating effect of number of blast exposures. A second aim was to examine the relationship between white matter integrity and neurocognitive function. Finally, a third aim was to examine the contribution of PTSD symptom severity to observed white matter alterations. One hundred fourteen OEF/OIF Veterans underwent DTI and neuropsychological examination and were divided into three groups including a control group, blast-related mTBI without LOC (mTBI-LOC) group, and blast-related mTBI with LOC (mTBI + LOC) group. Hierarchical regression models were used to examine the extent to which mTBI and PTSD predicted white matter abnormalities using two approaches: 1) a region-specific analysis and 2) a measure of spatial heterogeneity. Neurocognitive composite scores were calculated for executive functions, attention, memory, and psychomotor speed. Results showed that blast-related mTBI + LOC was associated with greater odds of having spatially heterogeneous white matter abnormalities. Region-specific reduction in fractional anisotropy (FA) in the left retrolenticular part of the internal capsule was observed in the mTBI + LOC group as the number of blast exposures increased. A mediation analysis revealed that mTBI + LOC indirectly influenced verbal memory performance through its effect on white matter integrity. PTSD was not associated with spatially heterogeneous white matter abnormalities. However, there was a suggestion that at higher levels of PTSD symptom severity, LOC was associated with reduced FA in the left retrolenticular part of the internal capsule. These results support postmortem reports of diffuse axonal injury following mTBI and suggest that injuries with LOC involvement may be particularly detrimental to white matter integrity. Furthermore, these results suggest that LOC-associated white matter abnormalities in turn influence neurocognitive function.
    04/2015; 28. DOI:10.1016/j.nicl.2015.04.001
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this investigation was to evaluate the differential influence of age-at-insult and brain pathology on longitudinal outcome and recovery of pragmatic communication after paediatric TBI. Children and adolescents with TBI (n=106) were categorized according to timing of brain insult: (i) Middle Childhood (5-9 years; n = 41); (ii) Late Childhood (10-11 years; n = 39); and (iii) Adolescence (12-15 years; n = 32) and group-matched to a typically developing (TD) control group (n=43). Participants were assessed on pragmatic language and behavioural function at 6- and 24-months post-TBI. While adolescent TBI was associated with post-acute disruption to skills that preceded recovery to age-expected levels by 2-years post-injury, the middle childhood TBI group demonstrated impairments at 6-months post- injury that were maintained at 2-year follow up. Reduced pragmatic communication was associated with frontal, temporal and corpus callosum lesions, as well as more frequent externalizing behaviour symptoms at 24-months post injury.
    Brain and Language 02/2015; 142C. DOI:10.1016/j.bandl.2015.01.007 · 3.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Progress in neuroimaging has yielded new powerful tools which, potentially, can be applied to clinical populations, improve the diagnosis of neurological disorders and predict outcome. At present, the diagnosis of consciousness disorders is limited to subjective assessment and objective measurements of behavior, with an emerging role for neuroimaging techniques. In this review we focus on white matter alterations measured using Diffusion Tensor Imaging on patients with consciousness disorders, examining the most common diffusion imaging acquisition protocols and considering the main issues related to diffusion imaging analyses. We conclude by considering some of the remaining challenges to overcome, the existing knowledge gaps and the potential role of neuroimaging in understanding the pathogenesis and clinical features of disorders of consciousness.
    Frontiers in Human Neuroscience 01/2015; 8. DOI:10.3389/fnhum.2014.01028 · 2.90 Impact Factor