Article

Mechanisms and optimization of in vivo delivery of lipophilic siRNAs.

Institute of Molecular Systems Biology, Swiss Federal Institute of Technology, ETH Zürich, HPT E73.
Nature Biotechnology (Impact Factor: 39.08). 11/2007; 25(10):1149-57. DOI: 10.1038/nbt1339
Source: PubMed

ABSTRACT Cholesterol-conjugated siRNAs can silence gene expression in vivo. Here we synthesize a variety of lipophilic siRNAs and use them to elucidate the requirements for siRNA delivery in vivo. We show that conjugation to bile acids and long-chain fatty acids, in addition to cholesterol, mediates siRNA uptake into cells and gene silencing in vivo. Efficient and selective uptake of these siRNA conjugates depends on interactions with lipoprotein particles, lipoprotein receptors and transmembrane proteins. High-density lipoprotein (HDL) directs siRNA delivery into liver, gut, kidney and steroidogenic organs, whereas low-density lipoprotein (LDL) targets siRNA primarily to the liver. LDL-receptor expression is essential for siRNA delivery by LDL particles, and SR-BI receptor expression is required for uptake of HDL-bound siRNAs. Cellular uptake also requires the mammalian homolog of the Caenorhabditis elegans transmembrane protein Sid1. Our results demonstrate that conjugation to lipophilic molecules enables effective siRNA uptake through a common mechanism that can be exploited to optimize therapeutic siRNA delivery.

0 Bookmarks
 · 
139 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The sequential secretion of insulin and glucagon delicately maintains glucose homeostasis by inhibiting or enhancing hepatic gluconeogenesis during postprandial or fasting states, respectively. Increased glucagon/insulin ratio is believed to be a major cause of the hyperglycemia seen in type 2 diabetes. Herein, we reveal that the early growth response gene-1 (Egr-1) can be transiently activated by glucagon in hepatocytes, which mediates glucagon-regulated gluconeogenesis by increasing the expression of gluconeogenesis genes. Blockage of Egr-1 function in the liver of mice led to lower fasting blood glucose, better pyruvate tolerance, and higher hepatic glycogen content. The mechanism analysis demonstrated that Egr-1 can directly bind to the promoter of C/EBPa and regulate the expression of gluconeogenesis genes in the later phase of glucagon stimulation. The transient increase of Egr-1 by glucagon kept the glucose homeostasis after fasting for longer periods of time, whereas constitutive Egr-1 elevation found in the liver of db/db mice and high serum glucagon level overactivated the C/EBPa/gluconeogenesis pathway and resulted in hyperglycemia. Blockage of Egr-1 activation in prediabetic db/db mice was able to delay the progression of diabetes. Our results suggest that dysregulation of Egr-1/C/EBPa on glucagon stimulation may provide an alternative mechanistic explanation for type 2 diabetes. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
    American Journal Of Pathology 11/2014; 185(2). DOI:10.1016/j.ajpath.2014.10.016 · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Designer nanoscaled materials have the potential to revolutionize diagnosis and treatment for glioma. This review summarizes current progress in nanoparticle-based therapies for glioma treatment including targeting, drug delivery, gene delivery, and direct tumor ablation. Preclinical and current human clinical trials are discussed. Although progress in the field has been significant over the past decade, many successful strategies demonstrated in the laboratory have yet to be implemented in human clinical trials. Looking forward, we provide examples of combined treatment strategies, which harness the potential for nanoparticles to interact with their biochemical environment, and simultaneously with externally applied photons or magnetic fields. We present our notion of the "ideal" nanoparticle for glioma, a concept that may soon be realized.
    Surgical Neurology International 01/2015; 6(Suppl 1):S45-58. DOI:10.4103/2152-7806.151334 · 1.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inflammatory bowel disease (IBD), comprised of ulcerative colitis and Crohn's disease, is believed to develop as a result of a deregulated inflammatory response to environmental factors in genetically susceptible individuals. Despite advances in understanding the genetic risks of IBD, associated single nucleotide polymorphisms have low penetrance, monozygotic twin studies suggest a low concordance rate, and increasing worldwide IBD incidence leave gaps in our understanding of IBD heritability and highlight the importance of environmental influences. Operating at the interface between environment and heritable molecular and cellular phenotypes, microRNAs (miRNAs) are a class of endogenous, small noncoding RNAs that regulate gene expression. Studies to date have identified unique miRNA expression profile signatures in IBD and preliminary functional analyses associate these deregulated miRNAs to canonical pathways associated with IBD pathogenesis. In this review, we summarize and discuss the miRNA expression signatures associated with IBD in tissue and peripheral blood, highlight miRNAs with potential future clinical applications as diagnostic and therapeutic targets, and provide an outlook on how to develop miRNA based therapies.
    Therapeutic Advances in Gastroenterology 01/2015; 8(1):4-22. DOI:10.1177/1756283X14547360

Full-text (2 Sources)

Download
67 Downloads
Available from
May 16, 2014