Citric acid production.

Department of Chemical, Biochemical and Ecology Engineering, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Askerceva 5, 1001 Ljubljana, Slovenia.
Biotechnology annual review 02/2007; 13:303-43. DOI: 10.1016/S1387-2656(07)13011-8
Source: PubMed

ABSTRACT Citric acid is a commodity chemical produced and consumed throughout The World. It is used mainly in the food and beverage industry, primarily as an acidulant. Although it is one of the oldest industrial fermentations, its World production is still in rapid increasing. Global production of citric acid in 2007 was over 1.6 million tones. Biochemistry of citric acid fermentation, various microbial strains, as well as various substrates, technological processes and product recovery are presented. World production and economics aspects of this strategically product of bulk biotechnology are discussed.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Aspergilli are widely used as cell factories for the production of food ingredients, enzymes and antibiotics. Traditionally, improvement of these cell factories has been done using classical methods, that is, random mutagenesis and screening; however, advances in methods for performing directed genetic modifications has enabled the use of metabolic engineering strategies. Genome sequencing of Aspergilli was originally trailing behind developments in the field of bacteria and yeasts, but with the recent availability of genome sequences for several industrially relevant Aspergilli, it has become possible to implement systems biology tools to advance metabolic engineering. These tools include genome-wide transcription analysis and genome-scale metabolic models. Herein, we review achievements in the field and highlight the impact of Aspergillus systems biology on industrial biotechnology.
    Biotechnology Journal 08/2012; 7(9):1147-55. · 3.71 Impact Factor
  • Source
    04/2012: pages 97-118; , ISBN: 978-1-62100-353-3
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hybrid electronic tongue was developed for the monitoring of citric acid production by Aspergillus niger. The system based on various potentiometric/voltammetric sensors and appropriate chemometric techniques provided correct qualitative and quantitative classification of the samples collected during standard Aspergillus niger culture and culture infected with yeast. The performance of the proposed approach was compared with the monitoring of the fermentation process carried out using classical methods. The results obtained proved, that the designed hybrid electronic tongue was able to evaluate the progress and correctness of the fermentation process.
    Analytica chimica acta 05/2014; 823:25-31. · 4.31 Impact Factor

Full-text (2 Sources)

Available from
May 28, 2014