A Vast Repertoire of Dscam Binding Specificities Arises from Modular Interactions of Variable Ig Domains

Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1662, USA.
Cell (Impact Factor: 33.12). 09/2007; 130(6):1134-45. DOI: 10.1016/j.cell.2007.08.026
Source: PubMed

ABSTRACT Dscam encodes a family of cell surface proteins required for establishing neural circuits in Drosophila. Alternative splicing of Drosophila Dscam can generate 19,008 distinct extracellular domains containing different combinations of three variable immunoglobulin domains. To test the binding properties of many Dscam isoforms, we developed a high-throughput ELISA-based binding assay. We provide evidence that 95% (>18,000) of Dscam isoforms exhibit striking isoform-specific homophilic binding. We demonstrate that each of the three variable domains binds to the same variable domain in an opposing isoform and identify the structural elements that mediate this self-binding of each domain. These studies demonstrate that self-binding domains can assemble in different combinations to generate an enormous family of homophilic binding proteins. We propose that this vast repertoire of Dscam recognition molecules is sufficient to provide each neuron with a unique identity and homotypic binding specificity, thereby allowing neuronal processes to distinguish between self and nonself.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Synaptic connections in our brains change continuously and throughout our lifetime. Despite ongoing synaptic changes, a healthy balance between excitation and inhibition is maintained by various forms of homeostatic and activity-dependent adaptations, ensuring stable functioning of neuronal networks. In this review we summarize experimental evidence for activity-dependent changes occurring in inhibitory axons, in cultures as well as in vivo. Axons form many presynaptic terminals, which are dynamic structures sharing presynaptic material along the axonal shaft. We discuss how internal (e.g., vesicle sharing) and external factors (e.g., binding of cell adhesion molecules or secreted factors) may affect the formation and plasticity of inhibitory synapses.
    Frontiers in Cellular Neuroscience 11/2013; 7:219. DOI:10.3389/fncel.2013.00219 · 4.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since the first description in 1989 of CD4-Fc-fusion antagonists that inhibit human immune deficiency virus entry into T cells, Fc-fusion proteins have been intensely investigated for their effectiveness to curb a range of pathologies, with several notable recent successes coming to market. These promising outcomes have stimulated the development of novel approaches to improve their efficacy and safety, while also broadening their clinical remit to other uses such as vaccines and intravenous immunoglobulin therapy. This increased attention has also led to non-clinical applications of Fc-fusions, such as affinity reagents in microarray devices. Here we discuss recent results and more generally applicable strategies to improve Fc-fusion proteins for each application, with particular attention to the newer, less charted areas.
    EMBO Molecular Medicine 10/2012; 4(10):1015-28. DOI:10.1002/emmm.201201379 · 8.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Down syndrome cell adhesion molecule (DSCAM), an immunoglobulin (Ig) superfamily member, was first identified from human and subsequently isolated from both vertebrates and invertebrates. Recent studies have shown that the DSCAM molecule serves diverse functions in neurodevelopment, such as axon guidance and neuronal migration. Most studies on DSCAM, however, have focused on mammals and arthropods, and our present knowledge of bony fish DSCAM is still limited. In this study, orange-spotted grouper Epinephelus coioides was used as an animal model to explore the possible functions of DSCAM. Two DSCAM isoforms were isolated, namely EcDSCAM A and EcDSCAM B, with lengths of 1648 and 2025 amino acids, respectively. The classical domain structure (i.e. 9Ig-4FNIII-1Ig-2FNIII-Transmembrane domain-Cytoplasmic tail) was also found in the coding regions of these two EcDSCAMs. Phylogenetic analysis showed that in the vertebrate DSCAM clade, the EcDSCAMs and various teleost DSCAMs were clustered into a subclade. Real-time PCR revealed that EcDSCAM B is the major EcDSCAM isoform, with the expression of EcDSCAM B being significantly higher than that of EcDSCAM A. During the first 14days after hatching (dph), increases in the expression of the two EcDSCAMs were observed at 2-4 and 8-11dph. EcDSCAM is expressed mainly in the intestine, nerve-related tissues, and stomach. Optic nerve transection analysis showed that EcDSCAM was up-regulated during optic nerve regeneration after optic nerve injury. We also investigated whether DSCAM expression was affected by viral nervous necrosis (VNN) disease or vibriosis. We found that when grouper were challenged with nervous necrosis virus (NNV), there were no meaningful changes in DSCAM expression, but challenge with Vibrio anguillarum led to a decrease in EcDSCAM levels in the brain. This decrease may be related to the pathogenesis of V. anguillarum.
    Developmental and comparative immunology 05/2012; 38(1):148-59. DOI:10.1016/j.dci.2012.05.001 · 3.71 Impact Factor

Preview (2 Sources)

Available from