Downregulation of PAR-4, a pro-apoptotic gene, in pancreatic tumors harboring K-ras mutation. Int J Cancer

Weis Center for Research, Geisinger Clinic, Danville, PA 17822, USA.
International Journal of Cancer (Impact Factor: 5.09). 01/2008; 122(1):63-70. DOI: 10.1002/ijc.23019
Source: PubMed


Oncogenic ras is known to inhibit cell death and growth inhibitory genes and activate prosurvival genes. Proapoptotic gene PAR-4, has been found to be downregulated by oncogenic ras. Since pancreatic tumors harbor a high incidence of K-ras point mutations, we hypothesized that oncogenic K-ras might influence the function and expression of PAR-4. PAR-4 expression levels were analyzed in 4 established pancreatic tumor cell lines, 10 normal pancreatic tissues, 44 frozen tumor tissues and 25 paraffin-embedded pancreatic adenocarcinoma samples by Real Time RT-PCR, Western blot analysis and immunohistochemistry. K-ras mutational status was analyzed by allele-specific oligonucleotide-hybridization. Expression levels of PAR-4 were correlated with the K-ras mutational status and clinical characteristics. Further, modulation of endogenous PAR-4 was tested by transiently expressing oncogenic ras in a wild-type K-ras pancreatic cancer cell line, BxPC-3. Three cell lines with K-ras mutations showed low levels of PAR-4 when compared to a normal pancreatic tissue. Of 44 frozen tumors, 16 showed appreciable upregulation of Par mRNA and 27 showed significant downregulation of PAR-4 mRNA when compared to normal pancreatic tissue and 1 had levels equivalent to normal pancreatic tissue. Of 25 paraffin-embedded tumors, 9 showed downregulation of PAR-4 protein and this downregulation of PAR-4 correlated significantly with K-ras mutational status (p < 0.00002). In addition, the presence of PAR-4 mRNA or protein expression in pancreatic tumors correlated with prolonged survival. Transient overexpression of oncogenic ras in wild-type K-ras BxPC-3 cells significantly downregulated the endogenous PAR-4 protein levels and conferred accelerated growth. Thus, downregulation or loss of PAR-4 expression by oncogenic ras may provide a selective survival advantage for pancreatic tumors, through inhibition of proapoptotic pathway mediated by PAR-4.

Download full-text


Available from: Mansoor Ahmed, Sep 10, 2014
42 Reads
  • Source
    • "K-Ras mutations are the most frequent mutations in pancreatic cancer (Almoguera et al., 1988), and Par-4 is significantly downregulated in pancreatic cancers harboring K-Ras point mutations (Ahmed et al., 2008). In addition, higher levels of Par-4 were correlated with better prognosis in terms of survival (Ahmed et al., 2008). Oncogenic Ras has been shown to downregulate Par-4 in a variety of cells via the MEK-ERK pathway, and this is considered as an important step towards Ras-induced transformation. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Selectivity toward cancer cells is the most desirable element in cancer therapeutics. Par-4 is a cancer cell-selective proapoptotic protein that functions intracellularly in the cytoplasmic and nuclear compartments as a tumor suppressor. Moreover, recent findings indicate that the Par-4 protein is secreted by cells, and extracellular Par-4 induces cancer cell-specific apoptosis by interaction with the cell-surface receptor GRP78. This review describes the mechanisms underlying the apoptotic effects of both extracellular and intracellular Par-4 acting through its effector domain SAC.
    Oncogene 05/2010; 29(27):3873-80. DOI:10.1038/onc.2010.141 · 8.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cancer chemoprevention is defined as the use of natural, synthetic, or biological agents to suppress, reverse or prevent the carcinogenic process from turning into aggressive cancer. Prostate apoptosis response-4 (Par-4) is a unique pro-apoptotic protein that selectively induces apoptosis in prostate cancer cells. However, its role in other malignancies has not been fully explored. This study tries to identify the functional significance of Par-4 in pancreatic cancer. Multiple molecular techniques such as Western blot analysis, trypan blue assay for cell viability, MTT assay for cell growth inhibition and Histone/DNA ELISA for apoptosis were used. Western blot analysis revealed that 3,3'-diindolylmethane (DIM) a chemopreventive agent, specifically its more bioavailable formulation, B-DIM, at low doses (20 micromol/L) induces Par-4, in L3.6pl and Colo-357 pancreatic cancer cells. At similar doses, DIM reduced cell viability and caused cell growth inhibition and apoptosis. Moreover, DIM pre-treatment sensitized the cells to cytotoxic action of chemotherapeutic drug gemcitabine through up-regulation of Par-4. The induction of Par-4 is indirectly related to increased sensitivity and cell death through apoptosis. To our knowledge the results reported here showed, for the first time, the induction of Par-4 by chemopreventive agents, in general, and DIM, in particular, in pancreatic cancer cells in vitro.
    Pharmaceutical Research 05/2008; 25(9):2117-24. DOI:10.1007/s11095-008-9581-8 · 3.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Role of prostate apoptosis response-4 (PAR-4) has been well described in prostate cancer. However, its significance in other cancers has not been fully elucidated. For the current study, we selected four pancreatic cancer cell lines (BxPC-3, Colo-357, L3.6pl, and HPAC) that showed differential endogenous expression of PAR-4. We found that nonpeptidic small-molecule inhibitors (SMI) of Bcl-2 family proteins (apogossypolone and TW-37; 250 nmol/L and 1 micromol/L, respectively) could induce PAR-4-dependent inhibition of cell growth and induction of apoptosis. Sensitivity to apoptosis was directly related to the expression levels of PAR-4 (R = 0.92 and R2 = 0.95). Conversely, small interfering RNA against PAR-4 blocked apoptosis, confirming that PAR-4 is a key player in the apoptotic process. PAR-4 nuclear localization is considered a prerequisite for cells to undergo apoptosis, and we found that the treatment of Colo-357 and L3.6pl cells with 250 nmol/L SMI leads to nuclear localization of PAR-4 as confirmed by 4',6-diamidino-2-phenylindole staining. In combination studies with gemcitabine, pretreatment with SMI leads to sensitization of Colo-357 cells to the growth-inhibitory and apoptotic action of a therapeutic drug, gemcitabine. In an in vivo setting, the maximum tolerated dose of TW-37 in xenograft of severe combined immunodeficient mice (40 mg/kg for three i.v. injections) led to significant tumor inhibition. Our results suggest that the observed antitumor activity of SMIs is mediated through a novel pathway involving induction of PAR-4. To our knowledge, this is the first study reporting SMI-mediated apoptosis involving PAR-4 in pancreatic cancer.
    Molecular Cancer Therapeutics 10/2008; 7(9):2884-93. DOI:10.1158/1535-7163.MCT-08-0438 · 5.68 Impact Factor
Show more