Article

How to analyze protein complexes by 2D blue native SDS-PAGE.

Ludwig Maximilian University, Munich, Germany.
Proteomics (Impact Factor: 4.43). 10/2007; 7 Suppl 1:6-16. DOI: 10.1002/pmic.200700205
Source: PubMed

ABSTRACT Natural compartmentalization makes proteome analysis of the cell, cell organelles and organelle subfractions possible. Protein complexes are the basis for the next level of compartmentalization that can be addressed well with proteomic technology. Protein complexes organize and maintain the cellular and organelle functions on all levels of complexity in time and space. Cell development and division, transcription and translation, respiration and photosynthesis, transport and metabolism can be defined by the activity of protein complexes. Since a large part of the protein complexes of the cell body are inserted in lipid membrane phases, isolation, separation and protein subunit identification were difficult to address. Blue native polyacrylamide gel electrophoresis (BN-PAGE) provides us with the technology for high resolution separation of membrane protein complexes. Here, we show that high resolution separation of protein complexes by BN-PAGE requires the establishment of a detailed solubilisation strategy. We show that BN/SDS-PAGE provides the scientist with a high resolution array of protein subunits which allows analysis of the specific subunit stoichiometry of a protein complex as well as the assembly of protein complexes by standard protein detection methodology like DIGE, gelblot analysis and mass spectrometry. We envision BN-PAGE to precede classical 2D IEF/SDS-analysis for detailed characterization of membrane proteomes.

2 Bookmarks
 · 
168 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Placental malfunction induces pregnancy disorders which contribute to life-threatening complications for both the mother and the fetus. Identification and characterization of placental multi-protein complexes is an important step to integratedly understand the protein-protein interaction networks in placenta which determine placental function. In this study, blue native/sodium dodecyl sulfate polyacrylamide gel electrophoresis (BN/SDS-PAGE) and Liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to screen the multi-protein complexes in placenta. 733 unique proteins and 34 known and novel heterooligomeric multi-protein complexes including mitochondrial respiratory chain complexes, integrin complexes, proteasome complexes, histone complex, and heat shock protein complexes were identified. A novel protein complex, which involves clathrin and small conductance calcium-activated potassium (SK) channel protein 2, was identified and validated by antibody based gel shift assay, co-immunoprecipitation and immunofluorescence staining. These results suggest that BN/SDS-PAGE, when integrated with LC-MS/MS, is a very powerful and versatile tool for the investigation of placental protein complexes. This work paves the way for deeper functional characterization of the placental protein complexes associated with pregnancy disorders.
    PLoS ONE 01/2013; 8(4):e62988. · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Barley (Hordeum vulgare) is an important cereal grain that is used in a range of products for animal and human consumption. Crop yield and seed quality has been optimized during decades by plant breeding programs supported by biotechnology and molecular biology techniques. The recently completed whole-genome sequencing of barley revealed approximately 26,100 open reading frames, which provides a foundation for detailed molecular studies of barley by functional genomics and proteomics approaches. Such studies will provide further insights into the mechanisms of, for example, drought and stress tolerance, micronutrient utilization, and photosynthesis in barley. In the present review we present the current state of proteomics research for investigations of barley chloroplasts, i.e., the organelle that contain the photosynthetic apparatus in the plant. We describe several different proteomics strategies and discuss their applications in characterization of the barley chloroplast as well as future perspectives for functional proteomics in barley research.
    Frontiers in Plant Science 01/2013; 4:52.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Two types of binding sites for hexokinase, designated as Type A or Type B sites, have been shown to coexist on brain mitochondria. The ratio of these sites varies between species. HK1 attaches by reversibly binding to the voltage dependent anion channel (VDAC). Regarding the nature of hexokinase binding sites, we investigated if it was linked to distinct VDAC interactomes. We approached this question by 2D BN/SDS-PAGE of mitochondria, followed by mass spectrometry. Our results are consistent with the possibility that the ratio of Type A/Type B sites is due to differential VDAC interactions in bovine and rat neuronal cells.
    Mitochondrion 05/2013; · 4.03 Impact Factor

Full-text (2 Sources)

View
77 Downloads
Available from
Jun 4, 2014