CXCR7 (RDC1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature.

ChemoCentryx, Inc., Mountain View, CA 94043, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 11/2007; 104(40):15735-40. DOI: 10.1073/pnas.0610444104
Source: PubMed

ABSTRACT Chemokines and chemokine receptors have been posited to have important roles in several common malignancies, including breast and lung cancer. Here, we demonstrate that CXCR7 (RDC1, CCX-CKR2), recently deorphanized as a chemokine receptor that binds chemokines CXCL11 and CXCL12, can regulate these two common malignancies. Using a combination of overexpression and RNA interference, we establish that CXCR7 promotes growth of tumors formed from breast and lung cancer cells and enhances experimental lung metastases in immunodeficient as well as immunocompetent mouse models of cancer. These effects did not depend on expression of the related receptor CXCR4. Furthermore, immunohistochemistry of primary human tumor tissue demonstrates extensive CXCR7 expression in human breast and lung cancers, where it is highly expressed on a majority of tumor-associated blood vessels and malignant cells but not expressed on normal vasculature. In addition, a critical role for CXCR7 in vascular formation and angiogenesis during development is demonstrated by using morpholino-mediated knockdown of CXCR7 in zebrafish. Taken together, these data suggest that CXCR7 has key functions in promoting tumor development and progression.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The 1990s brought a burst of information regarding the structure, expression pattern, and role in leukocyte migration and adhesion of chemokines and their receptors. At that time, the FDA approved the first therapeutic antibodies for cancer treatment. A few years later, it was reported that the chemokine receptors CXCR4 and CCR7 were involved on direct-ing metastases to liver, lung, bone marrow, or lymph nodes, and the over-expression of CCR4, CCR6, and CCR9 by certain tumors. The possibility of inhibiting the interaction of chemokine receptors present on the surface of tumor cells with their ligands emerged as a new therapeutic approach. Therefore, many research groups and companies began to develop small molecule antagonists and specific antibodies, aiming to neutralize sig-naling from these receptors. Despite great expectations, so far, only one anti-chemokine receptor antibody has been approved for its clinical use, mogamulizumab, an anti-CCR4 antibody, granted in Japan to treat refractory adult T-cell leukemia and lymphoma. Here, we review the main achievements obtained with anti-chemokine receptor antibodies for cancer immunotherapy, including discovery and clinical studies, proposed mechanisms of action, and therapeutic applications.
    Frontiers in Immunology 01/2015; 6. DOI:10.3389/fimmu.2015.00012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The chemokine receptor CXCR7 is an atypical CXCL12 receptor that, as opposed to the classical CXCL12 receptor CXCR4, signals preferentially via the β-arrestin pathway and does not mediate chemotaxis. We previously reported that the cyclic peptide TC14012, a potent CXCR4 antagonist, also engaged CXCR7, albeit with lower potency. Surprisingly, the compound activated the CXCR7-arrestin pathway. The reason underlying the opposite effects of TC14012 on CXCR4 and CXCR7, and the mode of binding of TC14012 to CXCR7, remained unclear. The mode of binding of TC14012 to CXCR4 is known from cocrystallization of its analogue CVX15 with CXCR4. We here report the the mode of binding of TC14012 to CXCR7 by combining the use of compound analogues, receptor mutants, and molecular modeling. We find that the mode of binding of TC14012 to CXCR7 is indeed similar to that of CVX15 to CXCR4, with compound positions Arg2 and Arg14 engaging CXCR7 key residues D179(4.60) (on the tip of transmembrane domain 4) and D275(6.58) (on the tip of transmembrane domain 6), respectively. Interestingly, the TC14012 parent compound T140 is not a CXCR7 agonist, because of conformational constraints in its pharmacophore, which in TC14012 are relieved through C-terminal amidation. However, an engineered salt bridge between the CXCR7 ECL2 substitution R197D and compound residue Arg1 permitted T140 agonism by repositioning the compound in the binding pocket. In conclusion, our results show that the opposite effect of TC14012 on CXCR4 and CXCR7 is not explained by different binding modes. Rather, engagement of the interface between transmembrane domains and extracellular loops readily triggers CXCR7, but not CXCR4, activation.
    Biochemistry 02/2015; DOI:10.1021/bi501526s · 3.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This article will review current knowledge on CXCR in fish, that represent three distinct vertebrate groups: Agnatha (jawless fishes), Chondrichthyes (cartilaginous fishes) and Osteichthyes (bony fishes). With the sequencing of many fish genomes, information on CXCR in these species in particular has expanded considerably. In mammals, 6 CXCRs have been described, and their homologues will be initially reviewed before considering a number of atypical CXCRs and a discussion of CXCR evolution. Copyright © 2015 Elsevier Inc. All rights reserved.
    General and Comparative Endocrinology 01/2015; DOI:10.1016/j.ygcen.2015.01.004 · 2.67 Impact Factor

Full-text (2 Sources)

Available from
Jan 8, 2015

Similar Publications

Alnawaz Rehemtulla