Proinsulin maturation, misfolding, and proteotoxicity.

Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 11/2007; 104(40):15841-6. DOI: 10.1073/pnas.0702697104
Source: PubMed

ABSTRACT As a tool to explore proinsulin (PI) trafficking, a human PI cDNA has been constructed with GFP fused within the C peptide. In regulated secretory cells containing appropriate prohormone convertases, the hProCpepGFP construct undergoes endoproteolytic processing to CpepGFP and native human insulin, which are specifically detected and cosecreted in parallel with endogenous insulin. Expression of C(A7)Y mutant PI results in autosomal dominant diabetes in Akita mice. We directly identify the misfolded PI in Akita islets and also show that C(A7)Y mutant PI, either in the context of the hProCpepGFP chimera or not, engages directly in protein complexes with nonmutant PI, impairing the trafficking and recovery of nonmutant PI. This trapping mechanism decreases insulin production in beta cells. Thereafter we observe a loss of beta cell viability. The data imply that PI misfolding leading to impaired endoplasmic reticulum exit of nonmutant PI may be a key early step in a chain reaction of beta cell dysfunction and demise leading to onset and progression of diabetes.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Insulin plays a central role in the regulation of metabolism in humans. Mutations in the insulin gene can impair the folding of its precursor protein, proinsulin, and cause permanent neonatal-onset diabetes mellitus known as Mutant INS-gene induced Diabetes of Youth (MIDY) with insulin deficiency. To gain insights into the molecular basis of this diabetes-associated mutation, we perform molecular dynamics simulations in wild-type and mutant (CysA7 to Tyr or C(A7)Y) insulin A chain in aqueous solutions. The C(A7)Y mutation is one of the identified mutations that impairs the protein folding by substituting the cysteine residue which is required for the disulfide bond formation. A comparative analysis reveals structural differences between the wild-type and the mutant conformations. The analyzed mutant insulin A chain forms a metastable state with major effects on its N-terminal region. This suggests that MIDY mutant involves formation of a partially folded intermediate with conformational change in N-terminal region in A chain that generates flexible N-terminal domain. This may lead to the abnormal interactions with other proinsulins in the aggregation process. This article is protected by copyright. All rights reserved.
    Proteins Structure Function and Bioinformatics 01/2015; 83(4). DOI:10.1002/prot.24759 · 2.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To maintain copious insulin granule stores in the face of ongoing metabolic demand, pancreatic beta cells must produce large quantities of proinsulin, the insulin precursor. Proinsulin biosynthesis can account for up to 30-50% of total cellular protein synthesis of beta cells. This puts pressure on the beta cell secretory pathway, especially the endoplasmic reticulum (ER), where proinsulin undergoes its initial folding, including the formation of three evolutionarily conserved disulfide bonds. In normal beta cells, up to 20% of newly synthesized proinsulin may fail to reach its native conformation, suggesting that proinsulin is a misfolding-prone protein. Misfolded proinsulin molecules can either be refolded to their native structure or degraded through ER associated degradation (ERAD) and autophagy. These degraded molecules decrease proinsulin yield but do not otherwise compromise beta cell function. However, under certain pathological conditions, proinsulin misfolding increases, exceeding the genetically determined threshold of beta cells to handle the misfolded protein load. This results in accumulation of misfolded proinsulin in the ER - a causal factor leading to beta cell failure and diabetes. In patients with Mutant INS-gene induced diabetes of Youth (MIDY), increased proinsulin misfolding due to insulin gene mutations is the primary defect operating as a "first hit" to beta cells. Additionally, increased proinsulin misfolding can be secondary to an unfavorable ER folding environment due to genetic and/or environmental factors. Under these conditions, increased wild-type proinsulin misfolding becomes a "second hit" to the ER and beta cells, aggravating beta cell failure and diabetes. In this article, we describe our current understanding of the normal proinsulin folding pathway in the ER, and then review existing links between proinsulin misfolding, ER dysfunction, and beta cell failure in the development and progression of type 2, type 1, and some monogenic forms of diabetes. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Molecular Aspects of Medicine 01/2015; DOI:10.1016/j.mam.2015.01.001 · 10.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Defects in insulin secretion play a central role in the pathogenesis of type 2 diabetes, yet the mechanisms driving beta-cell dysfunction remain poorly understood, and therapies to preserve glucose-dependent insulin release are inadequate. We report a luminescent insulin secretion assay that enables large-scale investigations of beta-cell function, created by inserting Gaussia luciferase into the C-peptide portion of proinsulin. Beta-cell lines expressing this construct cosecrete luciferase and insulin in close correlation, under both standard conditions or when stressed by cytokines, fatty acids, or ER toxins. We adapted the reporter for high-throughput assays and performed a 1,600-compound pilot screen, which identified several classes of drugs inhibiting secretion, as well as glucose-potentiated secretagogues that were confirmed to have activity in primary human islets. Requiring 40-fold less time and expense than the traditional ELISA, this assay may accelerate the identification of pathways governing insulin secretion and compounds that safely augment beta-cell function in diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.
    Cell Metabolism 01/2015; 21(1):126-37. DOI:10.1016/j.cmet.2014.12.010 · 16.75 Impact Factor