Hypomorphic CEP290/NPHP6 mutations result in anosmia caused by the selective loss of G proteins in cilia of olfactory sensory neurons.

Department of Pharmacology, University of Michigan, Ann Arbor, MI 48105, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 11/2007; 104(40):15917-22. DOI: 10.1073/pnas.0704140104
Source: PubMed

ABSTRACT Cilia regulate diverse functions such as motility, fluid balance, and sensory perception. The cilia of olfactory sensory neurons (OSNs) compartmentalize the signaling proteins necessary for odor detection; however, little is known regarding the mechanisms of protein sorting/entry into olfactory cilia. Nephrocystins are a family of ciliary proteins likely involved in cargo sorting during transport from the basal body to the ciliary axoneme. In humans, loss-of-function of the cilia-centrosomal protein CEP290/NPHP6 is associated with Joubert and Meckel syndromes, whereas hypomorphic mutations result in Leber congenital amaurosis (LCA), a form of early-onset retinal dystrophy. Here, we report that CEP290-LCA patients exhibit severely abnormal olfactory function. In a mouse model with hypomorphic mutations in CEP290 [retinal dystrophy-16 mice (rd16)], electro-olfactogram recordings revealed an anosmic phenotype analogous to that of CEP290-LCA patients. Despite the loss of olfactory function, cilia of OSNs remained intact in the rd16 mice. As in wild type, CEP290 localized to dendritic knobs of rd16 OSNs, where it was in complex with ciliary transport proteins and the olfactory G proteins G(olf) and Ggamma(13). Interestingly, we observed defective ciliary localization of G(olf) and Ggamma(13) but not of G protein-coupled odorant receptors or other components of the odorant signaling pathway in the rd16 OSNs. Our data implicate distinct mechanisms for ciliary transport of olfactory signaling proteins, with CEP290 being a key mediator involved in G protein trafficking. The assessment of olfactory function can, therefore, serve as a useful diagnostic tool for genetic screening of certain syndromic ciliary diseases.

Download full-text


Available from: Dyke P Mcewen, Jun 17, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Primary cilia project from the surface of most vertebrate cells, and function in sensation and signaling during both development and adult tissue homeostasis. Mounting evidence links ciliary defects with a wide variety of diseases, underscoring the importance of understanding how these dynamic organelles are assembled and maintained. However, despite their physiological and clinical relevance, the logic and machinery that regulate ciliogenesis remain largely enigmatic. Here, we summarize emerging data that connect the assembly and disassembly of the primary cilium to cell cycle progression and we examine how determinants of cell architecture, including the planar cell polarity pathway, may regulate ciliogenesis. Additionally, identification of the genes underlying diverse ciliopathies in human patients is shedding light on the regulation of the formation of this complex organelle.
    Developmental Dynamics 08/2008; 237(8):1972-81. DOI:10.1002/dvdy.21540 · 2.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Olfactory sensory neurons are able to detect odorants with high sensitivity and specificity. We have demonstrated that Ric-8B, a guanine nucleotide exchange factor (GEF), interacts with Galphaolf and enhances odorant receptor signaling. Here we show that Ric-8B also interacts with Ggamma13, a divergent member of the Ggamma subunit family which has been implicated in taste signal transduction, and is abundantly expressed in the cilia of olfactory sensory neurons. We show that Gbeta1 is the predominant Gbeta subunit expressed in the olfactory sensory neurons. Ric-8B and Gbeta1, like Galphaolf and Ggamma13, are enriched in the cilia of olfactory sensory neurons. We also show that Ric-8B interacts with Galphaolf in a nucleotide dependent manner, consistent with the role as a GEF. Our results constitute the first example of a GEF protein that interacts with two different olfactory G protein subunits and further implicate Ric-8B as a regulator of odorant signal transduction.
    Molecular and Cellular Neuroscience 08/2008; 38(3):341-8. DOI:10.1016/j.mcn.2008.03.006 · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Searches for the identity of genes that influence the levels of alcohol consumption by humans and other animals have often been driven by presupposition of the importance of particular gene products in determining positively or negatively reinforcing effects of ethanol. We have taken an unbiased approach and performed a meta-analysis across three types of mouse populations to correlate brain gene expression with levels of alcohol intake. Our studies, using filtering procedures based on QTL analysis, produced a list of eight candidate genes with highly heritable expression, which could explain a significant amount of the variance in alcohol preference in mice. Using the Allen Brain Atlas for gene expression, we noted that the candidate genes' expression was localized to the olfactory and limbic areas as well as to the orbitofrontal cortex. Informatics techniques and pathway analysis illustrated the role of the candidate genes in neuronal migration, differentiation, and synaptic remodeling. The importance of olfactory cues, learning and memory formation (Pavlovian conditioning), and cortical executive function, for regulating alcohol intake by animals (including humans), is discussed.
    Mammalian Genome 07/2008; 19(5):352-65. DOI:10.1007/s00335-008-9115-z · 2.88 Impact Factor