Article

An in vitro comparative study on the reactivation of nerve agent-inhibited guinea pig and human acetylcholinesterases by oximes.

Department of Molecular Pharmacology, Division of Biochemistry, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, USA.
Biochemistry (Impact Factor: 3.38). 11/2007; 46(42):11771-9. DOI: 10.1021/bi701002f
Source: PubMed

ABSTRACT The reactivation of nerve agent-inhibited acetylcholinesterase (AChE) by oxime is the most important step in the treatment of nerve agent poisoning. Since the evaluation of nerve agent antidotes cannot be conducted in humans, results from animal experiments are extrapolated to humans. Guinea pig is one of the animal models that is frequently used for conducting nerve agent antidote evaluations. Several investigations have demonstrated that the efficacy of an oxime primarily depends on its ability to reactivate nerve agent-inhibited AChE. If the in vitro oxime reactivation of nerve agent-inhibited animal AChE is similar to that of human AChE, it is likely that the results of an in vivo animal study will reliably extrapolate to humans. Therefore, the goal of this study was to compare the reactivation of guinea pig and human AChEs inhibited by six different G and V type nerve agents. Reactivation kinetic studies with five mono- and bis-pyridinium oximes showed that oxime reactivation of nerve agent-inhibited human AChE in most cases was faster than guinea pig AChE. The most significant enhancement was observed in the reactivation of human AChE inhibited by nerve agents containing bulky side chains GF, GD, and VR, by H-series oximes HLo-7, HI-6, and ICD-585. In these cases, species-related differences observed between the two AChEs, based on the second-order reactivation rate constants, were 90- to over 400-fold. On the other hand, less than 3-fold differences were observed in the rates of aging of nerve agent-inhibited guinea pig and human AChEs. These results suggest that the remarkable species-related differences observed in the reactivation of nerve agent-inhibited guinea pig and human AChEs were not due to differences in the rates of aging. These results also suggest that guinea pig may not be an appropriate animal model for the in vivo evaluation of oxime therapy.

0 Bookmarks
 · 
170 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cholinesterases (ChEs) are classified as either acetylcholinesterase (AChE) or butyrylcholinesterase (BChE) based on their substrate and inhibitor specificity. Organophosphate and carbamate compounds commonly represented by herbicides, pesticides, and nerve gases irreversibly inhibit ChEs. Therefore, exposure to organophosphates and carbamates is normally assessed by measuring ChE activity in blood. There are two approaches for measuring AChE and BChE activity present in whole blood: (1) separating blood into erythrocytes, which contain only AChE, and plasma which contains only BChE, to measure their activity individually, or (2) use a BChE-specific inhibitor to measure the activity of AChE in whole blood. A number of studies have reported the use of different inhibitors for the simultaneous measurement of AChE and BChE activities. However, the inhibitors used for completely inhibiting BChE activity also inhibited AChE activity leading to errors in reported values. The goal of this study was to find the most accurate and simple method for the simultaneous determination of AChE and BChE activity in animal whole blood. Solutions containing human AChE and BChE in various proportions were prepared and AChE and BChE activities were measured using three reported methods. Results demonstrate that ethopropazine and (-) huperzine A appear to be the most specific ChE inhibitors. Preliminary results with human and animal whole blood suggest that 20 microM ethopropazine and 500 nM (-) huperzine A can be used for measuring AChE and BChE activities across species.
    Chemico-Biological Interactions 06/2008; 175(1-3):298-302. · 2.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Non-human primates are valuable animal models that are used for the evaluation of nerve agent toxicity as well as antidotes and results from animal experiments are extrapolated to humans. It has been demonstrated that the efficacy of an oxime primarily depends on its ability to reactivate nerve agent-inhibited acetylcholinesterase (AChE). If the in vitro oxime reactivation of nerve agent-inhibited animal AChE is similar to that of human AChE, it is likely that the results of an in vivo animal study will reliably extrapolate to humans. Therefore, the goal of this study was to compare the aging and reactivation of human and different monkey (Rhesus, Cynomolgus, and African Green) AChEs inhibited by GF, GD, and VR. The oximes examined include the traditional oxime 2-PAM, two H-oximes HI-6 and HLo-7, and the new candidate oxime MMB4. Results indicate that oxime reactivation of all three monkey AChEs was very similar to human AChE. The maximum difference in the second-order reactivation rate constant between human and three monkey AChEs or between AChEs from different monkey species was 5-fold. Aging rate constants of GF-, GD-, and VR-inhibited monkey AChEs were very similar to human AChE except for GF-inhibited monkey AChEs, which aged 2-3 times faster than the human enzyme. The results of this study suggest that all three monkey species are suitable animal models for nerve agent antidote evaluation since monkey AChEs possess similar biochemical/pharmacological properties to human AChE.
    Chemico-Biological Interactions 06/2008; 175(1-3):261-6. · 2.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oxime-induced reactivation of organophosphorus (OP) nerve agent-inhibited acetylcholinesterase (AChE) is a very important step for the treatment of nerve agent toxicity. Therefore, extensive efforts are being made to develop more efficient and broad-spectrum oximes to replace the currently used oximes 2-PAM or obidoxime. In the 1970s and 1980s, several H oximes (such as HI-6 and HLo-7) were found to be very potent reactivators of non-aged soman-inhibited AChE. Later these oximes were shown to rapidly reactivate GF- and VR-inhibited AChE as well. However, the mechanism for the high potency of these H oximes is still unknown. In this study, the relationship between the reactivation rate constant of nerve agent-inhibited rhesus monkey AChE, human AChE and guinea pig AChE and the size of the alkoxyl (OR) group of nerve agents was analyzed. Results demonstrate that for nerve agent-inhibited rhesus monkey and human AChEs, reactivation by H oximes accelerated as the size of the OR group was increased. But with guinea pig AChE, reactivation by H oximes declined as the size of the OR group was increased. Reactivation kinetic study using GF- and VR-inhibited wild-type and mutant bovine AChEs has shown that mutations of Y124Q and W286A particularly reduced reactivation by these H oximes. Since these 2 amino acid residues are highly conserved in all AChEs sequenced to date, it is unlikely that the remarkable reduction observed in H oxime reactivation with guinea pig AChE is caused by a change in these two amino acid residues.
    Chemico-biological interactions 09/2010; 187(1-3):185-90. · 2.46 Impact Factor

Full-text (2 Sources)

View
10 Downloads
Available from
Jun 19, 2014