Transcranial magnetic stimulation elicits coupled neural and hemodynamic consequences.

Helen Wills Neuroscience Institute, Group in Vision Science, School of Optometry, University of California, Berkeley, CA 94720, USA.
Science (Impact Factor: 31.48). 10/2007; 317(5846):1918-21. DOI: 10.1126/science.1146426
Source: PubMed

ABSTRACT Transcranial magnetic stimulation (TMS) is an increasingly common technique used to selectively modify neural processing. However, application of TMS is limited by uncertainty concerning its physiological effects. We applied TMS to the cat visual cortex and evaluated the neural and hemodynamic consequences. Short TMS pulse trains elicited initial activation (approximately 1 minute) and prolonged suppression (5 to 10 minutes) of neural responses. Furthermore, TMS disrupted the temporal structure of activity by altering phase relationships between neural signals. Despite the complexity of this response, neural changes were faithfully reflected in hemodynamic signals; quantitative coupling was present over a range of stimulation parameters. These results demonstrate long-lasting neural responses to TMS and support the use of hemodynamic-based neuroimaging to effectively monitor these changes over time.

Download full-text


Available from: Brian N Pasley, Jul 05, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several recent studies using functional magnetic resonance imaging (fMRI) have shown that repetitive transcranial magnetic stimulation (rTMS) affects not only brain activity in stimulated regions but also resting-state functional connectivity (RSFC) between the stimulated region and other remote regions. However, these studies have only demonstrated an effect of either excitatory or inhibitory rTMS on RSFC, and have not clearly shown the bidirectional effects of both types of rTMS. Here, we addressed this issue by performing excitatory and inhibitory quadripulse TMS (QPS), which is considered to exert relatively large and long-lasting effects on cortical excitability. We found that excitatory rTMS (QPS with interstimulus intervals of 5 ms) decreased interhemispheric RSFC between bilateral primary motor cortices, whereas inhibitory rTMS (QPS with interstimulus intervals of 50 ms) increased interhemispheric RSFC. The magnitude of these effects on RSFC was significantly correlated with that of rTMS-induced effects on motor evoked potential from the corresponding muscle. The bidirectional effects of QPS were also observed in the stimulation over prefrontal and parietal association areas. These findings provide evidence for the robust bidirectional effects of excitatory and inhibitory rTMSs on RSFC, and raise a possibility that QPS can be a powerful tool to modulate RSFC. Hum Brain Mapp, 2013. © 2013 Wiley Periodicals, Inc.
    Human Brain Mapping 05/2014; 35(5). DOI:10.1002/hbm.22300 · 6.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transcranial electrical stimulation (TES) includes methods such as transcranial direct current stimulation, transcranial random noise stimulation, and transcranial alternating current stimulation. These methods provide novel ways of enhancing human cognitive abilities for restorative purposes, or for general cognitive enhancement, by modulating neuronal activity. I discuss here the basic principles behind these methods and provide some illustrations of their efficacy in cognitive enhancement in those with typical and atypical brain function. Next, I outline some future directions for research that are have been largely neglected, such as the issue of individual differences, cognitive side effects, the efficacy of TES for use with healthy elderly populations, children with atypical development, and sports. The results observed thus far with TES as well as its future possibilities have significant implications for both basic and translational neuroscience.
    03/2013; 4(1):20-33. DOI:10.2478/s13380-013-0104-7
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Executing difficult actions with the left hand results in bilateral activity of motor areas along the precentral gyrus. Using TMS and fMRI, we explored the functional relationship between primary (M1) and premotor areas during unimanual actions, focusing on M1 activity in the ipsilateral hemisphere. Single-pulse TMS revealed that the amplitude of motor-evoked potentials (MEPs), elicited in the stationary right-hand muscles following left M1 stimulation, fluctuated with the state of homologous muscles in the moving left hand. This ipsilateral excitability was pronounced when the left-hand movements were more complex. We used fMRI to visualize the cortical dynamics during unimanual actions. Trial-by-trial fluctuations in ipsilateral M1 activity were correlated with contralateral M1 responses and this correlation increased with movement complexity. Consistent with previous studies, the left caudal precentral premotor area (pcPM) was engaged during movements of either hand. Following low-frequency rTMS over left pcPM, the correlation between the activity level in the two M1s increased. This finding indicates that left pcPM may regulate the unintentional mirroring of motor commands in M1 during unilateral movement.
    Journal of Cognitive Neuroscience 09/2011; 23(9):2468-80. DOI:10.1162/jocn.2011.21612 · 4.69 Impact Factor