Article

fMRI during natural sleep as a method to study brain function during early childhood

Department of Psychology, University of California, San Diego, La Jolla, CA 92037, USA.
NeuroImage (Impact Factor: 6.13). 01/2008; 38(4):696-707. DOI: 10.1016/j.neuroimage.2007.08.005
Source: PubMed

ABSTRACT Many techniques to study early functional brain development lack the whole-brain spatial resolution that is available with fMRI. We utilized a relatively novel method in which fMRI data were collected from children during natural sleep. Stimulus-evoked responses to auditory and visual stimuli as well as stimulus-independent functional networks were examined in typically developing 2-4-year-old children. Reliable fMRI data were collected from 13 children during presentation of auditory stimuli (tones, vocal sounds, and nonvocal sounds) in a block design. Twelve children were presented with visual flashing lights at 2.5 Hz. When analyses combined all three types of auditory stimulus conditions as compared to rest, activation included bilateral superior temporal gyri/sulci (STG/S) and right cerebellum. Direct comparisons between conditions revealed significantly greater responses to nonvocal sounds and tones than to vocal sounds in a number of brain regions including superior temporal gyrus/sulcus, medial frontal cortex and right lateral cerebellum. The response to visual stimuli was localized to occipital cortex. Furthermore, stimulus-independent functional connectivity MRI analyses (fcMRI) revealed functional connectivity between STG and other temporal regions (including contralateral STG) and medial and lateral prefrontal regions. Functional connectivity with an occipital seed was localized to occipital and parietal cortex. In sum, 2-4 year olds showed a differential fMRI response both between stimulus modalities and between stimuli in the auditory modality. Furthermore, superior temporal regions showed functional connectivity with numerous higher-order regions during sleep. We conclude that the use of sleep fMRI may be a valuable tool for examining functional brain organization in young children.

0 Bookmarks
 · 
99 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Studies of brain connectivity have focused on two modes of networks: structural networks describing neuroanatomy and the intrinsic and evoked dependencies of functional networks at rest and during tasks. Each mode constrains and shapes the other across multiple timescales and each also shows age-related changes. Here we argue that understanding how brains change across development requires understanding the interplay between behavior and brain networks: changing bodies and activities modify the statistics of inputs to the brain; these changing inputs mold brain networks; and these networks, in turn, promote further change in behavior and input.
    Trends in Cognitive Sciences 05/2014; 18(8). DOI:10.1016/j.tics.2014.04.010 · 21.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Co-occurrence of preserved musical function with language and socio-communicative impairments is a common but understudied feature of Autism Spectrum Disorders (ASD). Given the significant overlap in neural organization of these processes, investigating brain mechanisms underlying speech and music may not only help dissociate the nature of these auditory processes in ASD but also provide a neurobiological basis for development of interventions. Using a passive-listening functional magnetic resonance imaging paradigm with spoken words, sung words and piano tones, we found that 22 children with ASD, with varying levels of functioning, activated bilateral temporal brain networks during sung-word perception, similarly to an age and gender-matched control group. In contrast, spoken-word perception was right-lateralized in ASD and elicited reduced inferior frontal gyrus (IFG) activity which varied as a function of language ability. Diffusion tensor imaging analysis reflected reduced integrity of the left hemisphere fronto-temporal tract in the ASD group and further showed that the hypoactivation in IFG was predicted by integrity of this tract. Subsequent psychophysiological interactions revealed that functional fronto-temporal connectivity, disrupted during spoken-word perception, was preserved during sung-word listening in ASD, suggesting alternate mechanisms of speech and music processing in ASD. Our results thus demonstrate the ability of song to overcome the structural deficit for speech across the autism spectrum and provide a mechanistic basis for efficacy of song-based interventions in ASD. Autism Res 2014, ●●: ●●–●●. © 2014 International Society for Autism Research, Wiley Periodicals, Inc.
    Autism Research 12/2014; DOI:10.1002/aur.1437 · 4.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The vast majority of mental illnesses can be conceptualized as developmental disorders of neural interactions within the connectome, or developmental miswiring. The recent maturation of pediatric in vivo brain imaging is bringing the identification of clinically meaningful brain-based biomarkers of developmental disorders within reach. Even more auspicious is the ability to study the evolving connectome throughout life, beginning in utero, which promises to move the field from topological phenomenology to etiological nosology. Here, we scope advances in pediatric imaging of the brain connectome as the field faces the challenge of unraveling developmental miswiring. We highlight promises while also providing a pragmatic review of the many obstacles ahead that must be overcome to significantly impact public health.
    Neuron 09/2014; 83(6):1335-1353. DOI:10.1016/j.neuron.2014.08.050 · 15.77 Impact Factor

Preview

Download
0 Downloads
Available from