Article

Relationship between the results of in vitro receptor binding assay to human estrogen receptor α and in vivo uterotrophic assay: Comparative study with 65 selected chemicals

Department of Human Environmental Science, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan.
Toxicology in Vitro (Impact Factor: 3.21). 03/2008; 22(1):225-31. DOI: 10.1016/j.tiv.2007.08.004
Source: PubMed

ABSTRACT For screening chemicals possessing endocrine disrupting potencies, the uterotrophic assay has been placed in a higher level in the OECD testing framework than the ER binding assay to detect ER-mediated activities. However, there are no studies that can demonstrate a clear relationship between these assays. In order to clarify the relationship between the in vitro ER binding and in vivo uterotrophic assays and to determine meaningful binding potency from the ER binding assay, we compared the results from these assays for 65 chemicals spanning a variety of chemicals classes. Under the quantitative comparison between logRBAs (relative binding affinities) and logLEDs (lowest effective doses), the log RBA was well correlated with both logLEDs of estrogenic and anti-estrogenic compounds at r(2)=0.67 (n=28) and 0.79 (n=23), respectively. The RBA of 0.00233% was found to be the lowest ER binding potency to elicit estrogenic or anti-estrogenic activities in the uterotrophic assay, accordingly this value is considered as the detection limit of estrogenic or anti-estrogenic activities in the uterotrophic assay. The usage of this value as cutoff provided the best concordance rate (82%). These findings are useful in a tiered approach for identifying chemicals that have potential to induce ER-mediated effects in vivo.

0 Followers
 · 
58 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alternatives to bisphenol A (BPA) are more and more used in thermal paper receipts.To get an overview of the situation in Switzerland, 124 thermal paper receipts were collected and analyzed. Whereas BPA was detected in most samples (n=100), some alternatives, namely Bisphenol S (BPS) , Pergafast(®) 201 and D-8 have been found in respectively 4, 11 and 9 samples. As no or few data on their endocrine activity are available, these chemicals and bisphenol F (BPF) were tested in vitro using the H295R steroidogenesis assay. 17β-estradiol production was induced by BPA and BPF, whereas free testosterone production was inhibited by BPA and BPS. Both non-bisphenol substances did not show significant effects. The binding affinity to 16 proteins and the toxicological potential (TP) were further calculated in silico using VirtualToxLab(TM). TP values lay between 0.269 and 0.476 and the main target was the estrogen receptor β (84.4 nM to 1.33 μM). A substitution of BPA by BPF and BPS should be thus considered with caution, since they exhibit almost a similar endocrine activity as BPA. D-8 and Pergafast(®) 201 could be alternatives to replace BPA, however further analyses are needed to better characterize their effects on the hormonal system. Copyright © 2015. Published by Elsevier Inc.
    Regulatory Toxicology and Pharmacology 01/2015; 22(3). DOI:10.1016/j.yrtph.2015.01.002 · 2.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: There is a potential risk to the environment from persistent estrogenic compounds in sewage sludge. In this study, eight bisphenols (BPs) were identified in sewage sludge collected from wastewater treatment plants in 15 cities in China. The estrogenic potencies of the eight BPs and the estrogenic activities of sludge samples were evaluated using a bioluminescence yeast estrogen screen (BLYES) assay. All sludge samples elicited considerable estrogenic activity at a range of 2.8-4.7ng E2g(-1) dry weight (dw). All BPs exhibited estrogenic activity in the BLYES assay, but there were significant differences between the potency of individual chemicals. Bisphenol AF had the highest activity, followed by tetrachlorobisphenol A, bisphenol F, bisphenol A, bisphenol E, bisphenol S and 2,4-dihydroxybenzophenone. Tetrabromobisphenol A showed weak estrogenic activity at 1×10(4)nM, but significant cytotoxicity above this concentration. The total estradiol equivalency quantities (EEQs) of BPs were in the range of 2.16-49.13pg E2g(-1) dw, accounting for 0.05-1.47% of the total EEQs in sewage sludge samples. The results indicate that BPs made a minor contribution to the estrogenic activity of the investigated sewage sludge. Nevertheless, our results suggest that considerable attention should be directed to the estrogenic potentials of emerging organic pollutants because of their widespread use and their potential to persist in the environment. Copyright © 2014 Elsevier Ltd. All rights reserved.
    Chemosphere 12/2014; 124. DOI:10.1016/j.chemosphere.2014.12.017 · 3.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Halogenated bisphenol A (H-BPAs), widely used in industrial production, have been identified in various environmental matrices and detected in human serum and breast milk. The persistence and prevalence of H-BPAs in the environment underscore the need to in-depth understand their adverse effects to humans and other organisms. In the present study, zebrafish embryos/larvae were used as models to investigate the developmental toxicities of three H-BPAs, namely tetrabromobisphenol A (TBBPA), tetrachlorobisphenol A (TCBPA), and bisphenol AF (BPAF). The half lethal concentration (LC50) values indicated that the rank order of toxicities of the chemicals were TCBPA>TBBPA>BPAF. Three H-BPAs exposure resulted in a variety of developmental lesions in the embryos/larvae, such as a delay in time to hatch, edema, and hemorrhage. The estrogenic activities of H-BPAs were determined by means of in vivo vitellogenin (vtg) assay and in vitro MVLN assay. Here only BPAF specifically shows a stronger estrogenic activity than BPA both in in vivo and in vitro. These data suggest that TCBPA, TBBPA, and BPAF are more potent toxicants than BPA, and indicate that further research of the mechanisms on their toxicities is required.
    Chemosphere 10/2014; 112C:275-281. DOI:10.1016/j.chemosphere.2014.04.084 · 3.50 Impact Factor