Integrin-linked kinase: dispensable for radiation survival of three-dimensionally cultured fibroblasts.

OncoRay - Center for Radiation Research in Oncology, Dresden University of Technology, Fetscherstrasse, Germany.
Radiotherapy and Oncology (Impact Factor: 4.52). 04/2008; 86(3):329-35. DOI: 10.1016/j.radonc.2007.09.007
Source: PubMed

ABSTRACT Cancer treatment by conventional radiotherapy is limited by normal tissue side-effects. Fibroblasts as "non-target" stromal cell type are considered as strong promoter of tumor growth and for developing a therapy resistant phenotype. Regarding application of novel molecular therapeutics combined with radiotherapy, evaluation of a specific targeted molecule in both tumor and normal cells is mandatory for efficacy and tolerability assessment. Previous work showed integrin-linked kinase (ILK), a mediator of beta-integrin signals and putative phosphorylator of AKT, as potent anti-survival regulator in human cancer cell lines.
To evaluate the role of ILK in normal fibroblast survival, ILK-wild-type (ILK(fl/fl)), ILK(-/-) and ILK(N-terminal) and ILK(C-terminal) domain expressing fibroblasts were irradiated with X-rays on different substrata or in three-dimensional laminin-rich extracellular matrix (lrECM).
On control substrata, ILK-deficient and ILK-mutant fibroblasts showed significant increase in radiation survival relative to ILK-wild-type cells. This effect was compensated by growth on ECM proteins and in 3D lrECM. ILK regulated AKT activity in a phosphatidylinositol-3 kinase (PI3K)-dependent manner. Upon PI3K inhibition, only ILK-wild-type fibroblasts showed significant radiosensitization.
These findings obtained in 3D cell cultures suggest ILK to be dispensable for the radiation survival response of normal fibroblasts. However, targeting the PI3K/AKT signaling axis pharmacologically might be critical for survival of normal fibroblasts exposed to ionizing radiation.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Cell-cell contact is thought to be critically involved in mechanisms leading to radioresistance. Here, we assessed the influence of confluent compared to subconfluent cell culture conditions and the radiosensitizing ability of E-cadherin inhibition alone or in combination with C225-mediated EGFR inhibition in human squamous cell carcinoma cells. Our results show higher radioresistance under subconfluent growth conditions than under confluency. Delayed plating only resulted in higher radiation survival in confluently growing cells. While E-cadherin depletion significantly reduced basal clonogenic survival, increased the rate of apoptosis, and diminished cell adhesion, the cellular radiosensitivity remained unchanged under both subconfluent and confluent conditions. C225 decreased basal cell survival but failed to modify radiation survival. Additional treatment of E-cadherin knockdown cell cultures with C225 did not further reduce basal cell survival or lead to radiosensitization. Interestingly, E-cadherin silencing in 3D cell cultures did not alter radiosensitivity. Our data indicate that cell-cell contact and E-cadherin are not prominently involved in the regulation of radioresistance of human squamous cell carcinoma cells. In addition, no regulatory interaction between E-cadherin and EGFR in the radiation response was observed.
    Radiation Research 07/2012; 178(3):224-33. · 2.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inhibition of histone deacetylases (HDACs) has preclinically and clinically shown promise to overcome radio- and chemoresistance of tumor cells. NDACI054 is a novel HDAC inhibitor, which has been evaluated here for its effects on cell survival and radiosensitization of human tumor cell lines from different origins cultured under more physiological three-dimensional (3D), extracellular matrix (ECM)-based conditions. A549 lung, DLD-1 colorectal, MiaPaCa2 pancreatic and UT-SCC15 head and neck squamous cell carcinoma cells were treated with increasing NDACI054 concentrations (0-50nM, 24h) either alone or in combination with X-rays (single dose, 0-6Gy). Subsequently, 3D clonogenic cell survival, HDAC activity, histone H3 acetylation, apoptosis, residual DNA damage (γH2AX/p53BP1 foci assay 24h post irradiation) and phosphorylation kinetics of Ataxia telangiectasia mutated (ATM), DNA-dependent protein kinase (DNA-PK), Caspase-3 and Poly(ADP-ribose)-Polymerase 1 (PARP 1) cleavage were analyzed. NDACI054 potently decreased HDAC activity with concomitant increase in acetyl-histone H3 levels, mediated significant cytotoxicity and radiosensitization. These effects were accompanied by a significant increase of residual γH2AX/p53BP1-positive foci, slightly elevated levels of Caspase-3 and PARP 1 cleavage but no induction of apoptosis. Our data show potent antisurvival and radiosensitizing effects of the novel HDAC inhibitor NDACI054 encouraging further preclinical examinations on this compound for future clinical use.
    Radiotherapy and Oncology 09/2013; · 4.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, we aimed to investigate the effect of single and double knockdown of the inhibitor of apoptosis proteins (IAP) Survivin and X-linked IAP (XIAP) on three-dimensional (3D) clonogenic survival, migration capacity and underlying signaling pathways. Colorectal cancer cell lines (HCT-15, SW48, SW480, SW620) were subjected to siRNA-mediated single or Survivin/XIAP double knockdown followed by 3D colony forming assays, cell cycle analysis, Caspase activity assays, migration assays, matrigel transmigration assays and Western blotting (Survivin, XIAP, Focal adhesion kinase (FAK), p-FAK Y397, Akt1, p-Akt1 S473, Extracellular signal-regulated kinase (ERK1/2), p-ERK1/2 T202/Y204, Glycogen synthase kinase (GSK)3β, p-GSK3β S9, nuclear factor (NF)-κB p65). While basal cell survival was altered cell line-dependently, Survivin or XIAP single and Survivin/XIAP double knockdown enhanced cellular radiosensitivity of all tested cancer cell lines grown in 3D. Particularly double knockdown conditions revealed accumulation of cells in G2/M, increased subG1 fraction, elevated Caspase 3/7 activity, and reduced migration. Intracellular signaling showed dephosphorylation of FAK and Akt1 upon Survivin and/or Survivin/XIAP silencing. Our results strengthen the notion of Survivin and XIAP to act as radiation resistance factors and further indicate that these apoptosis-regulating proteins are also functioning in cell cycling and cell migration.
    Radiotherapy and Oncology 07/2013; · 4.52 Impact Factor