Stromal cell-derived factor-1 enhances motility and integrin up-regulation through CXCR4, ERK and NF-kappaB-dependent pathway in human lung cancer cells.

School of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, Taiwan.
Biochemical Pharmacology (Impact Factor: 4.65). 01/2008; 74(12):1702-12. DOI: 10.1016/j.bcp.2007.08.025
Source: PubMed

ABSTRACT The chemokine stromal-derived factor-1alpha (SDF-1alpha) and its receptor, CXCR4, play a crucial role in adhesion and migration of human cancer cells. Integrins are the major adhesive molecules in mammalian cells. Here we found that SDF-1alpha increased the migration and cell surface expression of beta1 or beta3 integrin in human lung cancer cells (A549 cells). CXCR4-neutralizing antibody, CXCR4 specific inhibitor (AMD3100) or small interfering RNA against CXCR4 inhibited the SDF-1alpha-induced increase in the migration of lung cancer cells. Stimulation of cells with SDF-1alpha caused an increase in extracellular signal regulated kinase (ERK) phosphorylation in a time-dependent manner. In addition, treatment of A549 cells with ERK inhibitor (PD98059), NF-kappaB inhibitor (PDTC) or IkappaB protease inhibitor (TPCK) inhibited SDF-1alpha-induced cells migration and integrins expression. Treatment of A549 cells with SDF-1alpha induced IkappaB kinase alpha/beta (IKK alpha/beta) phosphorylation, IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 Ser(536) phosphorylation, and kappaB-luciferase activity. The SDF-1alpha-mediated increases in IKK alpha/beta phosphorylation, p65 Ser(536) phosphorylation, and kappaB-luciferase activity were inhibited by PD98059 and ERK2 mutant. Taken together, these results suggest that SDF-1alpha acts through CXCR4 to activate ERK, which in turn activates IKKalpha/beta and NF-kappaB, resulting in the activations of beta1 and beta3 integrins and contributing the migration of lung cancer cell.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Metastatic occurrence is the principal cause of death in breast cancer patients. The high osteotropism makes breast cancer the most common primary tumor type associated with metastatic bone disease. The peculiar clinical aspects associated with metastases limited to the skeletal system suggest considering these cases as a distinctive subset of metastatic patients with a better prognosis. Because bone is frequently the first metastatic site in disease relapse, it is feasible that the next improvement in therapeutic options for bone metastatic disease could be associated with an improvement of survival expectation and quality of life in breast cancer patients. Study of the molecular basis of bone remodeling and breast cancer osteotropism has allowed identification of several therapeutic candidates involved in formation and progression of bone metastases. These targets are frequently the determinants of positive feedback between the tumor and bone cells whose clinical outcome is osteolytic lesions. In this review, we discuss the physiopathologic features underlying targeted therapeutic strategies aimed at interfering with the aberrant bone remodeling associated with breast cancer metastases.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mechanisms by which prostate cancer (PCa) cell adhesion and migration are controlled during metastasis are not well understood. Here, we studied the effect of CXCL12 in PCa cell adhesion and spreading in DU145 and PC3 cell lines using as substrates collagen I, fibronectin (FN), and their recombinant fragments. CXCL12 treatment increased β1 integrin-dependent PC3 cell adhesion on FN which correlated with increased focal adhesion kinase activation. However neither α5β1 nor α4β1 subunits were involved in this adhesion. By contrast, CXCL12 decreased DU145 adhesion and spreading on FN by downregulating α5 and β1 integrin expression. To demonstrate the clinical relevance of CXCL12 in PCa, we measured CXCL12 levels in plasma by using ELISA and found that the chemokine is elevated in PCa patients when compared to controls. The high concentration of CXCL12 in patients suffering from PCa in comparison to those with benign disease or healthy individuals implicates CXCL12 as a potential biomarker for PCa. In addition these data show that CXCL12 may be crucial in controlling PCa cell adhesion on fibronectin and collagen I, possibly via crosstalk with integrin receptors and/or altering the expression levels of integrin subunits.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The G-protein coupled chemokine (C-X-C motif) receptor CXCR4 is linked to cancer, HIV, and WHIM (Warts, Hypogammaglobulinemia, Infections, and Myelokathexis) syndrome. While CXCR4 is reported to be overexpressed in multiple human cancer types and many hematological cancer cell lines, we have observed poor in vitro cell surface expression of CXCR4 in many solid tumor cell lines. We explore further the possible factors and pathways involved in regulating CXCR4 expression. Here, we showed that MEK-ERK signaling pathway and NFAT3 transcriptional factor plays a novel role in regulating CXCR4 expression. When cultured as 3D spheroids, HeyA8 ovarian tumor cells showed a dramatic increase in surface CXCR4 protein levels as well as mRNA transcripts. Furthermore, HeyA8 3D spheroids showed a decrease in phospho-ERK levels when compared to adherent cells. The treatment of adherent HeyA8 cells with an inhibitor of the MEK-ERK pathway, U0126, resulted in a significant increase in surface CXCR4 expression. Additional investigation using the PCR array assay comparing adherent to 3D spheroid showed a wide range of transcription factors being up-regulated, most notably a> 20 fold increase in NFAT3 transcription factor mRNA. Finally, chromatin immunoprecipitation (ChIP) analysis showed that direct binding of NFAT3 on the CXCR4 promoter corresponds to increased CXCR4 expression in HeyA8 ovarian cell line. Taken together, our results suggest that high phospho-ERK levels and NFAT3 expression plays a novel role in regulating CXCR4 expression.
    PLoS ONE 12/2014; 9(12):e115249. DOI:10.1371/journal.pone.0115249 · 3.53 Impact Factor