Prediagnostic plasma C-peptide and pancreatic cancer risk in men and women.

Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
Cancer Epidemiology Biomarkers & Prevention (Impact Factor: 4.32). 11/2007; 16(10):2101-9. DOI: 10.1158/1055-9965.EPI-07-0182
Source: PubMed

ABSTRACT Hyperinsulinemia and insulin resistance have been proposed as underlying mechanisms for the increase in pancreatic cancer among long-standing diabetics and obese individuals. An association between serum insulin levels and pancreatic cancer risk was reported in a recent study, but the population was composed of heavy smokers and their findings may not be generalizable to nonsmokers.
Pancreatic cancer cases and matched controls were obtained from four large-scale prospective cohorts to examine the association between prediagnostic plasma levels of C-peptide and insulin and pancreatic cancer. One hundred ninety-seven pancreatic cancer cases were diagnosed during a maximum of 20 years of follow-up, after excluding cases diagnosed within 2 years of blood collection or with baseline diabetes. We estimated OR and confidence intervals (CI) using conditional logistic regression with adjustment for pancreatic cancer risk factors.
Prediagnostic plasma C-peptide was positively associated with pancreatic cancer risk (OR, 1.52; 95% CI, 0.87-2.64, highest compared with the lowest quartile, P(trend) = 0.005). The association was not modified by body mass index or physical activity but seemed to be slightly stronger among never smokers than ever smokers. Fasting C-peptide and insulin were not related to pancreatic cancer; however, we observed a strong linear association for nonfasting C-peptide and pancreatic cancer (OR, 4.24; 95% CI, 1.30-13.8, highest versus lowest quartile, P(trend) < 0.001).
Based on our finding of a strong positive association with nonfasting C-peptide levels, we propose that insulin levels in the postprandial state may be the relevant exposure for pancreatic carcinogenesis; however, other studies will need to examine this possibility.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The clinical management of pancreatic cancer is severely hampered by the absence of effective screening tools. Sixty-seven biomarkers were evaluated in prediagnostic sera obtained from cases of pancreatic cancer enrolled in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO). The panel of CA 19-9, OPN, and OPG, identified in a prior retrospective study, was not effective. CA 19-9, CEA, NSE, bHCG, CEACAM1 and PRL were significantly altered in sera obtained from cases greater than 1 year prior to diagnosis. Levels of CA 19-9, CA 125, CEA, PRL, and IL-8 were negatively associated with time to diagnosis. A training/validation study using alternate halves of the PLCO set failed to identify a biomarker panel with significantly improved performance over CA 19-9 alone. When the entire PLCO set was used for training at a specificity (SP) of 95%, a panel of CA 19-9, CEA, and Cyfra 21-1 provided significantly elevated sensitivity (SN) levels of 32.4% and 29.7% in samples collected <1 and >1 year prior to diagnosis, respectively, compared to SN levels of 25.7% and 17.2% for CA 19-9 alone. Most biomarkers identified in previously conducted case/control studies are ineffective in prediagnostic samples, however several biomarkers were identified as significantly altered up to 35 months prior to diagnosis. Two newly derived biomarker combinations offered advantage over CA 19-9 alone in terms of SN, particularly in samples collected >1 year prior to diagnosis. However, the efficacy of biomarker-based tools remains limited at present. Several biomarkers demonstrated significant velocity related to time to diagnosis, an observation which may offer considerable potential for enhancements in early detection.
    PLoS ONE 04/2014; 9(4):e94928. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diabetes and cancer are both heterogeneous and multifactorial diseases with tremendous impact on health worldwide. Epidemiologic evidence suggests that certain malignancies may be associated with diabetes, as well as with diabetes risk factors and, perhaps, with certain diabetes treatments. Numerous biological mechanisms could account for these relationships. Insulin-like growth factor (IGF)-1, IGF-2, IGF-1 receptors, insulin, and the insulin receptor play roles in the development and progression of cancers. Although evidence from randomized controlled trials does not support or refute associations of diabetes and its treatments with either increased or reduced risk of cancer incidence or prognosis, consideration of malignancy incidence rates and the magnitude of the trials that would be required to address these issues explains why such studies may not be readily undertaken. 摘要 糖尿病与肿瘤都是异质性的多因素疾病,严重影响全球人类健康。流行病学证据揭示,某些恶性肿瘤与糖尿病、糖尿病危险因素和某些降糖药物密切相关。多种生物学机制可以解释这些关联。胰岛素样生长因子(IGF)-1、IGF-2、IGF-1受体、胰岛素和胰岛素受体均参与了某些肿瘤的发生和发展。尽管众多随机对照试验尚未得出糖尿病及其治疗药物影响肿瘤发生和发展的明确结论,恶性肿瘤的发病率以及解决该问题所需的研究规模决定了该类研究的实施难度。
    Journal of Diabetes 12/2013; 5(4). · 2.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Natural products represent a rich reservoir of potential small chemical molecules exhibiting anti-proliferative and chemopreventive properties. Here, we show that treatment of pancreatic ductal adenocarcinoma (PDAC) cells (PANC-1, MiaPaCa-2) with the isoquinoline alkaloid berberine (0.3-6 µM) inhibited DNA synthesis and proliferation of these cells and delay the progression of their cell cycle in G1. Berberine treatment also reduced (by 70%) the growth of MiaPaCa-2 cell growth when implanted into the flanks of nu/nu mice. Mechanistic studies revealed that berberine decreased mitochondrial membrane potential and intracellular ATP levels and induced potent AMPK activation, as shown by phosphorylation of AMPK α subunit at Thr-172 and acetyl-CoA carboxylase (ACC) at Ser79. Furthermore, berberine dose-dependently inhibited mTORC1 (phosphorylation of S6K at Thr389 and S6 at Ser240/244) and ERK activation in PDAC cells stimulated by insulin and neurotensin or fetal bovine serum. Knockdown of α1 and α2 catalytic subunit expression of AMPK reversed the inhibitory effect produced by treatment with low concentrations of berberine on mTORC1, ERK and DNA synthesis in PDAC cells. However, at higher concentrations, berberine inhibited mitogenic signaling (mTORC1 and ERK) and DNA synthesis through an AMPK-independent mechanism. Similar results were obtained with metformin used at doses that induced either modest or pronounced reductions in intracellular ATP levels, which were virtually identical to the decreases in ATP levels obtained in response to berberine. We propose that berberine and metformin inhibit mitogenic signaling in PDAC cells through dose-dependent AMPK-dependent and independent pathways.
    PLoS ONE 12/2014; 9(12):e114573. · 3.53 Impact Factor

Full-text (2 Sources)

Available from
May 23, 2014