Role of E-cadherin in the induction of apoptosis of HPV16-positive CaSki cervical cancer cells during multicellular tumor spheroid formation.

Department of Veterinary Microbiology, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki, Japan.
APOPTOSIS (Impact Factor: 3.61). 02/2008; 13(1):97-108. DOI: 10.1007/s10495-007-0132-2
Source: PubMed

ABSTRACT Multicellular tumor spheroids (MCTS) are three dimensional cell culture systems induced by suspension culture. MCTS are widely used in cancer research because of their similarity to solid tumors. CaSki cells are derived from a metastatic cervical cancer containing human papillomavirus 16 (HPV16). Cell death of CaSki cells in MCTS has been previously reported, and our model is used to better characterize the mechanisms of cell death of HPV16-positive keratinocytes. In this study, we found that apoptosis of CaSki cells was induced by suspension culture along with the formation of MCTS after 24 h of incubation. In suspended CaSki cells, monoclonal antibodies blocking E-cadherin function inhibited MCTS formation and suppressed suspension-induced apoptosis in a dose-dependent manner. Western blot for E-cadherin detected upregulation of the authentic 120 kDa band from MCTS of CaSki cells as well as a shorter 100 kDa band. Addition of EGF, whose receptor is known to form a complex with E-cadherin, abrogated apoptosis of suspended CaSki cells in a dose-dependent manner. These findings suggest that E-cadherin-dependent cell-cell contact, directly or indirectly, mediates the signal to undergo apoptosis of CaSki cells during MCTS formation, and thus provides new information on the role of E-cadherin in cervical cancer cell apoptosis.

Download full-text


Available from: Takeshi Haga, Jul 13, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell-cell junctions and junctions between cells and extracellular matrix are essential for maintenance of the structural and functional integrity of the cochlea, and are also a major target of acoustic trauma. While morphological assessments have revealed adhesion dysfunction in noise-traumatized cochleae, the molecular mechanisms responsible for adhesion disruption are not clear. Here, we screened the transcriptional expression of 49 adhesion-related genes in normal rat cochleae and measured the expression changes in the early phases of cochlear pathogenesis after acoustic trauma. We found that genes from four adhesion families, including the immunoglobulin superfamily and the integrin, cadherin, and selectin families, are expressed in the normal cochlea. Exposure to an intense noise at 120dB sound pressure level (SPL) for 2h caused site-specific changes in expression levels in the apical and the basal sections of the sensory epithelium. Expression changes that occurred in the cochlear sensory epithelium were biphasic, with early upregulation at 2h post-noise exposure and subsequent downregulation at 1day post-exposure. Importantly, the altered expression level of seven genes (Sgce, Sell, Itga5, Itgal, Selp, Cntn1 and Col5a1) is related to the level of threshold shift of the auditory brainstem response (ABR), an index reflecting functional change in the cochlea. Notably, the genes showing expression changes exhibited diverse constitutive expression levels and belong to multiple adhesion gene families. The finding of expression changes in multiple families of adhesion genes in a temporal fashion (2h vs. 1day) and a spatial fashion (the apical and the basal sensory epithelia as well as the lateral wall tissue) suggests that acoustic overstimulation provokes a complex response in adhesion genes, which likely involves multiple adhesion-related signaling pathways.
    Neurobiology of Disease 10/2011; 45(2):723-32. DOI:10.1016/j.nbd.2011.10.018 · 5.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: no abstract.
    Biotechnology Journal 10/2008; 3(9-10):1285. DOI:10.1002/biot.1285 · 3.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Acoustic overstimulation causes apoptotic cell death in the cochlea. This death process is mediated, in part, by the mitochondrial signaling pathway involving Bcl-2 family proteins. Myeloid cell leukemia sequence 1 (Mcl-l) is an antiapoptotic member of the Bcl-2 family. Its involvement in noise-induced hair cell death has not been characterized. Here we report the endogenous expression and the noise-induced expression of Mcl-1 in Sprague Dawley rat cochleae. In the sensory epithelia of normal cochleae, there is strong constitutive expression of Mcl-1 mRNA, with an expression level higher than that of many other Bcl-2 family genes. The Mcl-1 protein is preferentially expressed in outer hair cells. After exposure to a high level of continuous noise at 115-dB sound pressure level for 1 hr, Mcl-1 expression displays a time-dependent alteration, with up-regulation of Mcl-1 mRNA at 4 hr postexposure and protein up-regulation at 1 day postexposure. Western blot analysis reveals the up-regulated Mcl-1 as the full-length form of Mcl-1. Immunolabeling of the Mcl-1 protein reveals the early increase in Mcl-1 immunoreactivity in the nuclear region of the hair cells displaying apoptotic phenotypes and a subsequent increase in survival hair cells. These results suggest that Mcl-1 is involved in the regulation of hair cell pathogenesis resulting from acoustic stress, possibly by influencing the nuclear events of apoptosis.
    Journal of Neuroscience Research 01/2010; 88(8):1812-21. DOI:10.1002/jnr.22333 · 2.73 Impact Factor