Article

Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors.

Cancer Research Institute and Department of Pathology, University of California San Francisco, 2340 Sutter Street, San Francisco, California 94143-0875, USA.
Nature Medicine (Impact Factor: 28.05). 11/2007; 13(10):1211-8. DOI: 10.1038/nm1649
Source: PubMed

ABSTRACT An association between inflammation and cancer has long been recognized, but the cause and effect relationship linking the two remains unclear. Myc is a pleiotropic transcription factor that is overexpressed in many human cancers and instructs many extracellular aspects of the tumor tissue phenotype, including remodeling of tumor stroma and angiogenesis. Here we show in a beta-cell tumor model that activation of Myc in vivo triggers rapid recruitment of mast cells to the tumor site-a recruitment that is absolutely required for macroscopic tumor expansion. In addition, treatment of established beta-cell tumors with a mast cell inhibitor rapidly triggers hypoxia and cell death of tumor and endothelial cells. Inhibitors of mast cell function may therefore prove therapeutically useful in restraining expansion and survival of pancreatic and other cancers.

1 Follower
 · 
124 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The success of antibody therapy in cancer is consistent with the ability of these molecules to activate immune responses against tumors. Experience in clinical applications, antibody design, and advancement in technology have enabled antibodies to be engineered with enhanced efficacy against cancer cells. This allows re-evaluation of current antibody approaches dominated by antibodies of the IgG class with a new light. Antibodies of the IgE class play a central role in allergic reactions and have many properties that may be advantageous for cancer therapy. IgE-based active and passive immunotherapeutic approaches have been shown to be effective in both in vitro and in vivo models of cancer, suggesting the potential use of these approaches in humans. Further studies on the anticancer efficacy and safety profile of these IgE-based approaches are warranted in preparation for translation toward clinical application.
    Current topics in microbiology and immunology 01/2015; 388:109-149. DOI:10.1007/978-3-319-13725-4_6 · 3.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The anti-inflammatory protein annexin A1 (ANXA1) has been associated with cancer progression and metastasis, suggesting its role in regulating tumor cell proliferation. We investigated the mechanism of ANXA1 interaction with formylated peptide receptor 2 (FPR2/ALX) in control, peritumoral and tumor larynx tissue samples from 20 patients, to quantitate the neutrophils and mast cells, and to evaluate the protein expression and co-localization of ANXA1/FPR2 in these inflammatory cells and laryngeal squamous cells by immunocytochemistry. In addition, we performed in vitro experiments to further investigate the functional role of ANXA1/FPR2 in the proliferation and metastasis of Hep-2 cells, a cell line from larynx epidermoid carcinoma, after treatment with ANXA12-26 (annexin A1 N-terminal-derived peptide), Boc2 (antagonist of FPR) and/or dexamethasone. Under these treatments, the level of Hep-2 cell proliferation, pro-inflammatory cytokines, ANXA1/FPR2 co-localization, and the prostaglandin signalling were analyzed using ELISA, immunocytochemistry and real-time PCR. An influx of neutrophils and degranulated mast cells was detected in tumor samples. In these inflammatory cells of peritumoral and tumor samples, ANXA1/FPR2 expression was markedly exacerbated, however, in laryngeal carcinoma cells, this expression was down-regulated. ANXA12-26 treatment reduced the proliferation of the Hep-2 cells, an effect that was blocked by Boc2, and up-regulated ANXA1/FPR2 expression. ANXA12-26 treatment also reduced the levels of pro-inflammatory cytokines and affected the expression of metalloproteinases and EP receptors, which are involved in the prostaglandin signalling. Overall, this study identified potential roles for the molecular mechanism of the ANXA1/FPR2 interaction in laryngeal cancer, including its relationship with the prostaglandin pathway, providing promising starting points for future research. ANXA1 may contribute to the regulation of tumor growth and metastasis through paracrine mechanisms that are mediated by FPR2/ALX. These data may lead to new biological targets for therapeutic intervention in human laryngeal cancer.
    PLoS ONE 12/2014; 9(12):e111317. DOI:10.1371/journal.pone.0111317 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mast cells are immune cells that accumulate in the tumors and their microenvironment during disease progression. Mast cells are armed with a wide array of receptors that sense environment modifications and, upon stimulation, they are able to secrete several biologically active factors involved in the modulation of tumor growth. For example, mast cells are able to secrete pro-angiogenic and growth factors but also pro- and anti-inflammatory mediators. Recent studies have allowed substantial progress in understanding the role of mast cells in tumorigenesis/disease progression but further studies are necessary to completely elucidate their impact in the pathophysiology of cancer. Here we review observations suggesting that mast cells could modulate tumor growth in humans. We also discuss the drawbacks related to observations from mast cell-deficient mouse models, which could have consequences in the determination of a potential causative relationship between mast cells and cancer. We believe that the understanding of the precise role of mast cells in tumor development and progression will be of critical importance for the development of new targeted therapies in human cancers.
    01/2015; 7:09. DOI:10.12703/P7-09