Vibration exposure and biodynamic responses during whole-body vibration training.

Wyle Laboratories, Inc., Houston, TX 77058, USA.
Medicine &amp Science in Sports &amp Exercise (Impact Factor: 4.46). 11/2007; 39(10):1794-800. DOI: 10.1249/mss.0b013e3181238a0f
Source: PubMed

ABSTRACT Excessive, chronic whole-body vibration (WBV) has a number of negative side effects on the human body, including disorders of the skeletal, digestive, reproductive, visual, and vestibular systems. Whole-body vibration training (WBVT) is intentional exposure to WBV to increase leg muscle strength, bone mineral density, health-related quality of life, and decrease back pain. The purpose of this study was to quantitatively evaluate vibration exposure and biodynamic responses during typical WBVT regimens.
Healthy men and women (N = 16) were recruited to perform slow, unloaded squats during WBVT (30 Hz; 4 mm(p-p)), during which knee flexion angle (KA), mechanical impedance, head acceleration (Ha(rms)), and estimated vibration dose value (eVDV) were measured. WBVT was repeated using two forms of vibration: 1) vertical forces to both feet simultaneously (VV), and 2) upward forces to only one foot at a time (RV).
Mechanical impedance varied inversely with KA during RV (effect size, eta(p)(2): 0.668, P < 0.01) and VV (eta(p)(2): 0.533, P < 0.05). Ha(rms) varied with KA (eta(p)(2): 0.686, P < 0.01) and is greater during VV than during RV at all KA (P < 0.01). The effect of KA on Ha(rms) is different for RV and VV (eta(p)(2): 0.567, P < 0.05). The eVDV associated with typical RV and VV training regimens (30 Hz, 4 mm(p-p), 10 min.d(-1)) exceeds the recommended daily vibration exposure as defined by ISO 2631-1 (P < 0.01).
ISO standards indicate that 10 min.d(-1) WBVT is potentially harmful to the human body; the risk of adverse health effects may be lower during RV than VV and at half-squats rather than full-squats or upright stance. More research is needed to explore the long-term health hazards of WBVT.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The intention of this study was to systematically analyze the impact of biomechanical parameters in terms of different peak-to-peak displacements and knee angles on trunk and neck muscle activity during whole-body vibration (WBV). 28 healthy men and women (age 23 ± 3 years) performed four static squat positions (2 peak-to-peak displacements x 2 knee angles) on a side alternating vibration platform with and without vibration stimulus. Surface electromyography (EMG) was used to record the neuromuscular activity of the erector spinae muscle, the rectus abdominis muscle, and of the splenius muscle. EMG levels normalized to maximal voluntary contractions ranged between 3.2 – 27.2 % MVC during WBV. The increase in muscle activity caused by WBV was significant, particularly for the back muscles, which was up to 19.0 % MVC. The impact of the factor ‘condition’ (F-values ranged from 13.4 to 132.0, p ≤ 0.001) and of the factor ‘peak-to-peak displacement’ (F-values ranged from 6.4 to 69.0 and p-values from < 0.001 to 0.01) were statistically significant for each muscle tested. However, the factor ‘knee angle’ only affected the back muscles (F-value 10.3 and 7.3, p ≤ 0.01). The results of this study should give more information for developing effective and safe training protocols for WBV treatment of the upper body.
    Journal of sports science & medicine 03/2015; 14:155-162. · 0.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to investigate the effects of whole body vibration (WBV) on physiological parameters, cutaneous temperature, tactile sensitivity, and balance. Twenty-four healthy adults (25.3 ± 2.6 years) participated in four WBV sessions. They spent 15 minutes on a vibration platform in the vertical mode at four different frequencies (31, 35, 40, and 44 Hz) with 1 mm of amplitude. All variables were measured before and after WBV exposure. Pressure sensation in five anatomical regions and both feet was determined using Von Frey monofilaments. Postural sway was measured using a force plate. Cutaneous temperature was obtained with an infrared camera. WBV influences the discharge of the skin touch-pressure receptors, decreasing sensitivity at all measured frequencies and foot regions (íµí±ƒ ≤ 0.05). Regarding balance, no differences were found after 20 minutes of WBV at frequencies of 31 and 35 Hz. At 40 and 44 Hz, participants showed higher anterior-posterior center of pressure (COP) velocity and length. The cutaneous temperature of the lower limbs decreased during and 10 minutes after WBV. WBV decreases touch-pressure sensitivity at all measured frequencies 10 min after exposure. This may be related to the impaired balance at higher frequencies since these variables have a role in maintaining postural stability. Vasoconstriction might explain the decreased lower limb temperature.
    The Scientific World Journal 12/2014; 2015. DOI:10.1155/2015/452657 · 1.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Whole body vibration (WBV) can be an important tool to treat patients with osteoarthritis (OA). The purpose of this study was to systematically review published research concerning the use of WBV in people with OA. In PubMed and Scopus, the number of publications (NP) is respectively to the keywords arthrosis, 289,586 and 10,569, osteoarthrosis, 299,158 and 3,952, arthritis, 251,453 and 236,849 and osteoarthritis, 56,323 and 80,008. Putting together the information found in the analyzed 4 papers, the numbers of subjects were ranging from 15 to 52 and frequencies ranging from 24 to 40 Hz. Self-report of the status of disease (WOMAC) was used in 2 papers, while the pain levels were evaluated by the visual analog scale (VAS) in 2 papers. Different tests were used in these studies, as (i) TUG, (ii) step test, (iii) 20-meter walk test, (iv) timed get up and go test (TGUG), (v) chair stand test (CST), (vi) 6-minute walk test (6MWT), (vii) knee muscle strength (extension/flexion) and (viii) proprioception (threshold for detection of passive movement (TDPM) to evaluate the effects promoted by the exercises due to the WBV. In conclusion, these studies indicate that the WBV could bring some benefits to patients with OA.

Full-text (2 Sources)

Available from
May 21, 2014