Article

In vivo evidence for inverse agonism of Agouti-related peptide in the central nervous system of proopiomelanocortin-deficient mice.

Center for the Study of Weight Regulation and Associated Disorders, Oregon Health and Science University, Portland, Oregon, USA.
Diabetes (Impact Factor: 8.47). 02/2008; 57(1):86-94. DOI: 10.2337/db07-0733
Source: PubMed

ABSTRACT Melanocyte-stimulating hormone (MSH) peptides processed from proopiomelanocortin (POMC) regulate energy homeostasis by activating neuronal melanocortin receptor (MC-R) signaling. Agouti-related peptide (AgRP) is a naturally occurring MC-R antagonist but also displays inverse agonism at constitutively active melanocortin-4 receptor (MC4-R) expressed on transfected cells. We investigated whether AgRP functions similarly in vivo using mouse models that lack all neuronal MSH, thereby precluding competitive antagonism of MC-R by AgRP.
Feeding and metabolic effects of the MC-R agonist melanotan II (MTII), AgRP, and ghrelin were investigated after intracerebroventricular injection in neural-specific POMC-deficient (Pomc(-/-)Tg/+) and global POMC-deficient (Pomc(-/-)) mice. Gene expression was quantified by RT-PCR.
Hyperphagic POMC-deficient mice were more sensitive than wild-type mice to the anorectic effects of MTII. Hypothalamic melanocortin-3 (MC3)/4-R mRNAs in POMC-deficient mice were unchanged, suggesting increased receptor sensitivity as a possible mechanism for the heightened anorexia. AgRP reversed MTII-induced anorexia in both mutant strains, demonstrating its ability to antagonize MSH agonists at central MC3/4-R, but did not produce an acute orexigenic response by itself. The action of ghrelin was attenuated in Pomc(-/-)Tg/+ mice, suggesting decreased sensitivity to additional orexigenic signals. However, AgRP induced delayed and long-lasting modifications of energy balance in Pomc(-/-)Tg/+, but not glucocorticoid-deficient Pomc(-/-) mice, by decreasing oxygen consumption, increasing the respiratory exchange ratio, and increasing food intake.
These data demonstrate that AgRP can modulate energy balance via a mechanism independent of MSH and MC3/4-R competitive antagonism, consistent with either inverse agonist activity at MC-R or interaction with a distinct receptor.

0 Followers
 · 
61 Views
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human life expectancy has increased over the past 50 years due to scientific and medical advances and higher food availability. However, overweight and obesity affect more than 50% of adults and 15% of infants and adolescents. There has also been a marked increase in the prevalence of the metabolic syndrome in recent decades, which has been associated with a reduction in nocturnal pineal production of melatonin with aging and an increased risk of coronary diseases, type 2 diabetes mellitus (T2DM) and death. Melatonin is currently under intensive investigation in experimental animal models of diabetes, obesity and MS at pharmacological doses (between 5 to 20 mg kg-1 body weight), demonstrating its capacity to ameliorate the whole metabolism and its potential as an alternative to conventional drug therapies for the disorders associated with the MS, i.e., elevated systolic blood pressure, and impairment of glucose homeostasis, plasma lipid profile, inflammation, oxidative stress, and increased body weight. An especially significant finding is the induction by melatonin of white adipose tissue browning, which may be related to its effects against oxidative stress, uncoupling the mitochondrial bioenergetic process by enhancing the expression of uncoupled-protein-1 (UCP-1), which has been related to body weight reduction in experimental animals. Further research is required to improve knowledge of this mechanism. Clinical studies are needed with the administration of pharmacological melatonin doses, because the dose has ranged between 0.050 and 0.16 mg kg-1 bw in most studies to date. Melatonin is a natural phytochemical, and it is also important to test its beneficial metabolic effects when consumed in functional foods.
    08/2014; 5:2806-2832. DOI:10.1039/C4FO00317A
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity and metabolic disorders, such as type 2 diabetes and hypertension, have attracted considerable attention as life-threatening diseases not only in developed countries but also worldwide. Additionally, the rate of obesity in young people all over the world is rapidly increasing. Accumulated evidence suggests that the central nervous system may participate in the development of and/or protection from obesity. For example, in the brain, the hypothalamic melanocortin system senses and integrates central and peripheral metabolic signals and controls the degree of energy expenditure and feeding behavior, in concert with metabolic status, to regulate whole-body energy homeostasis. Currently, researchers are studying the mechanisms by which peripheral metabolic molecules control feeding behavior and energy balance through the central melanocortin system. Accordingly, recent studies have revealed that some inflammatory molecules and transcription factors participate in feeding behavior and energy balance by controlling the central melanocortin pathway, and have thus become new candidates as therapeutic targets to fight metabolic diseases such as obesity and diabetes.
    Cellular and Molecular Life Sciences CMLS 06/2014; DOI:10.1007/s00018-014-1650-z · 5.86 Impact Factor