Inhibition on Candida albicans biofilm formation using divalent cation chelators (EDTA).

Section of Infection and Immunity, Glasgow Dental School and Hospital, The University of Glasgow, Glasgow, UK.
Mycopathologia (Impact Factor: 1.55). 01/2008; 164(6):301-6. DOI: 10.1007/s11046-007-9068-x
Source: PubMed

ABSTRACT Candida albicans can readily form biofilms on both inanimate and biological surfaces. In this study we investigated a means of inhibiting biofilm formation using EDTA (Ethylenediaminetetra-acetic acid), a divalent cation chelating agent, which has been shown to affect C. albicans filamentation. Candida albicans biofilms were formed in 96-well microtitre plates. Cells were allowed to adhere for 1, 2, and 4 h at 37 degrees C, washed in PBS, and then treated with different concentrations of EDTA (0, 2.5, 25, and 250 mM). EDTA was also added to the standardized suspension prior to adding to the microtiter plate and to a preformed 24 h biofilm. All plates were then incubated at 37 degrees C for an additional 24 h to allow for biofilm formation. The extent and characteristics of biofilm formation were then microscopically assessed and with a semi-quantitative colorimetric technique based on the use of an XTT-reduction assay. Northern blot analysis of the hyphal wall protein (HWP1) expression was also monitored in planktonic and biofilm cells treated with EDTA. Microscopic analysis and colorimetric readings revealed that filamentation and biofilm formation were inhibited by EDTA in a concentration dependent manner. However, preformed biofilms were minimally affected by EDTA (maximum of 31% reduction at 250 mM). The HWP1 gene expression was reduced in EDTA-treated planktonic and biofilm samples. These results indicate that EDTA inhibits C. albicans biofilm formation are most likely through its inhibitory effect on filamentation and indicates the potential therapeutic effects of EDTA. This compound may serve a non-toxic means of preventing biofilm formation on infections with a C. albicans biofilm etiology.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently we described the pH dependence of activity for a family of cationic antimicrobial peptides (CAMPs) selected from a combinatorial library. In the current work we report on the effects of toxic ions (Cu(2+), Zn(2+), and F(-)) and the chelator EDTA on the activity profiles of one member of this family, the 12-residue cationic antimicrobial peptide *ARVA, against a panel of microorganisms. All four ions exhibited either synergy or additivity with *ARVA for all organisms tested with the exception of *ARVA combined with NaF against Candida albicans which exhibited indifference. CuCl2 and ZnCl2 exhibited synergy with *ARVA against both the Gram negative Pseudomonas aeruginosa and the Gram positive Staphylococcus aureus as well as strong additivity against E. coli at submillimolar concentrations. The chelator EDTA was synergistic with *ARVA against the two Gram negative organisms but showed only simple additivity with S. aureus and C. albicans despite their much lower MICs with EDTA. This effect may be related to the known differences in the divalent ion binding properties of the Gram negative LPS layer as compared to the peptidoglycan layer of the Gram positive organism. Unlike the other ions, NaF showed only additivity or indifference when combined with *ARVA and required much higher concentrations for activity. The yeast C. albicans did not show synergy or strong additivity with any of the inhibitory compounds tested. The effects of toxic ions and chelators observed here have important implications for applications using CAMPs and for the design of novel formulations involving CAMPs. This article is part of a Special Issue entitled: Interfacially active peptides and proteins.
    Biochimica et Biophysica Acta (BBA) - Biomembranes 05/2014; DOI:10.1016/j.bbamem.2014.05.005 · 3.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Evaluation of fungal biofilm formation can be performed using several techniques. In this protocol, we describe methods used to form Candida biofilms on three different medical device substrates (denture strips, catheter disks and contact lenses) to quantify them and to evaluate their architecture and drug susceptibility. Biofilm formation involves adhesion of fungal cells to pretreated substrates, followed by growth in medium. Formed biofilms are quantified by determining their metabolic activity and dry weight, whereas their gross morphology and architecture are evaluated using fluorescence microscopy, scanning electron microscopy and confocal scanning laser microscopy techniques. Susceptibility of biofilms is determined by comparing their metabolic activity in the presence of antifungal agents with that in their absence. The methods described here can be completed in a typical laboratory with minimum involvement of software. Evaluation of the growth of fungal biofilms and their analyses can be completed using the described methods in approximately 15 d.
    Nature Protocol 02/2008; 3(12):1909-24. DOI:10.1038/nprot.2008.192 · 8.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we investigated the role of cellular iron status in hyphae and biofilm formation in Candida albicans. Iron deprivation by a chelator, bathophenanthrolene disulfonic acid, promoted hyphal development even in nonhyphal-inducing media without affecting growth of C. albicans cells. Iron-acquisition defective mutants, Deltaftr1 and Deltaccc2, also showed hyphal formation, which was prevented by iron supplementation. Notably, most of the tested morphological mutants Deltacph1, Deltaefh1 and Deltatpk1 continued to form hyphae under iron-deprived conditions, except the Deltaefg1 null mutant, which showed a complete block in hyphae formation. The role of EFG1 in filamentation under iron-deprived conditions was further confirmed by Northern analysis, which showed a considerable upregulation of the EFG1 transcript. Of notable importance, all the morphological mutants including Deltaefg1 mutant possessed enhanced membrane fluidity under iron-deprived conditions; however, this did not appear to contribute to hyphal development. Interestingly, iron deprivation did not affect the ability of C. albicans to form biofilms on the catheter surface and led to no gross defects in azole resistance phenotype of these biofilms of C. albicans cells. Our study, for the first time, establishes a link between cellular iron, Efg1p and hyphal development of C. albicans cells that is independent of biofilm formation.
    FEMS Yeast Research 07/2008; 8(5):744-55. DOI:10.1111/j.1567-1364.2008.00394.x · 2.44 Impact Factor