Progress and prospects: gene therapy clinical trials (part 1)

Gene Therapy (Impact Factor: 3.1). 11/2007; 14(20):1439-47. DOI: 10.1038/
Source: PubMed


Over the last two decades gene therapy has moved from preclinical to clinical studies for many diseases ranging from single gene disorders such as cystic fibrosis and Duchenne muscular dystrophy, to more complex diseases such as cancer and cardiovascular disorders. Gene therapy for severe combined immunodeficiency (SCID) is the most significant success story to date, but progress in many other areas has been significant. We asked 20 leaders in the field succinctly to summarize and comment on clinical gene therapy research in their respective areas of expertise and these are published in two parts in the Progress and Prospect series.

Download full-text


Available from: Seng H. Cheng,
18 Reads
  • Source
    • "Delivery of therapeutic agents by gene therapy has been extensively studied in a broad range of diseases [21-24]. However, a recurrent problem in these therapies is the efficient delivery of the therapeutic DNA, RNA, or siRNA to the target cells. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The efficient delivery of therapeutic genes into cells of interest is a critical challenge to broad application of non-viral vector systems. In this research, a novel TPGS-b-(PCL-ran-PGA) nanoparticle modified with polyethyleneimine was applied to be a vector of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and endostatin for cervical cancer gene therapy. Firstly, a novel biodegradable copolymer, TPGS-b-(PCL-ran-PGA), was synthesized and characterized. The nanoparticles were fabricated by an emulsion/solvent evaporation method and then further modified with polyethyleneimine (PEI) carrying TRAIL and/or endostatin genes. The uptake of pIRES2-EGFP and/or pDsRED nanoparticles by HeLa cells were observed by fluorescence microscopy and confocal laser scanning microscopy. The cell viability of TRAIL/endostatin-loaded nanoparticles in HeLa cells was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay. Severe combined immunodeficient mice carrying HeLa tumor xenografts were treated in groups of six including phosphate-buffered saline control, blank TPGS-b-(PCL-ran-PGA) nanoparticles, blank TPGS-b-(PCL-ran-PGA)/PEI nanoparticles, and three types of gene nanoparticles. The activity was assessed using average increase in survival time, body weight, and solid tumor volume. All the specimens were then prepared as formalin-fixed and paraffin-embedded tissue sections for hematoxylin-eosin staining. The data showed that the nanoparticles could efficiently deliver plasmids into HeLa cells. The cytotoxicity of the HeLa cells was significantly increased by TRAIL/endostatin-loaded nanoparticles when compared with control groups. The use of TPGS in combination with TRAIL and endostatin had synergistic antitumor effects. In conclusion, the TRAIL/endostatin-loaded nanoparticles offer considerable potential as an ideal candidate for in vivo cancer gene delivery.
    Nanoscale Research Letters 04/2013; 8(1):161. DOI:10.1186/1556-276X-8-161 · 2.78 Impact Factor
  • Source
    • "However, as a protein, endostatin has many challenges in its clinical application, such as short half-life and instability. Recently, gene therapy, the use of DNA as a pharmaceutical agent, has been extensively studied in a broad range of diseases including tumors, which can achieve a relative long-term stable expression of therapeutic proteins [13-16]. A major limitation of gene therapy is the efficient delivery of therapeutic DNA to the target cells and tissues. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cervical cancer remains a major problem in women's health worldwide. In this research, a novel biodegradable d-alpha-tocopheryl polyethylene glycol 1000 succinate-b-poly(epsilon-caprolactone-ran-glycolide) (TPGS-b-(PCL-ran-PGA)) nanoparticle (NP) was developed as a co-delivery system of docetaxel and endostatin for the synergistic treatment of cervical cancer. Docetaxel-loaded TPGS-b-(PCL-ran-PGA) NPs were prepared and further modified by polyethyleneimine for coating plasmid pShuttle2-endostatin. All NPs were characterized in size, surface charge, morphology, and in vitro release of docetaxel and pDNA. The uptake of coumarin 6-loaded TPGS-b-(PCL-ran-PGA)/PEI-pDsRED by HeLa cells was observed via fluorescent microscopy and confocal laser scanning microscopy. Endostatin expression in HeLa cells transfected by TPGS-b-(PCL-ran-PGA)/PEI-pShuttle2-endostatin NPs was detected using Western blot analysis, and the cell viability of different NP-treated HeLa cells was determined by MTT assay. The HeLa cells from the tumor model, nude mice, were treated with various NPs including docetaxel-loaded-TPGS-b-(PCL-ran-PGA)/PEI-endostatin NPs, and their survival time, tumor volume and body weight were monitored during regimen process. The tumor tissue histopathology was analyzed using hematoxylin and eosin staining, and microvessel density in tumor tissue was evaluated immunohistochemically. The results showed that the TPGS-b-(PCL-ran-PGA)/PEI NPs can efficiently and simultaneously deliver both coumarin-6 and plasmids into HeLa cells, and the expression of endostatin was verified via Western blot analysis. Compared with control groups, the TPGS-b-(PCL-ran-PGA)/PEI-pShuttle2-endostatin NPs significantly decreased the cell viability of HeLa cells (p < 0.01), inhibited the growth of tumors, and even eradicated the tumors. The underlying mechanism is attributed to synergistic anti-tumor effects by the combined use of docetaxel, endostatin, and TPGS released from NPs. The TPGS-b-(PCL-ran-PGA) NPs could function as multifunctional carrier for chemotherapeutic drugs and genetic material delivery, and offer considerable potential as an ideal candidate for in vivo cancer therapy.
    Nanoscale Research Letters 12/2012; 7(1):666. DOI:10.1186/1556-276X-7-666 · 2.78 Impact Factor
  • Source
    • "To improve the therapeutic effect, the combined treatment strategy was suggested future direction [11], [12], [13]. Gene therapy has emerged as a powerful tool to regulate biological functions in diseased tissues and to treat cancers [14], [15]. Oncolytic viruses not only have capacity to express therapeutic genes in tumor cells but also can be used as a direct tumor-destruction medicament. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Both adoptive immunotherapy and gene therapy hold a great promise for treatment of malignancies. However, these strategies exhibit limited anti-tumor activity, when they are used alone. In this study, we explore whether combination of cytokine-induced killer (CIK) adoptive immunotherapy with oncolytic adenovirus-mediated transfer of human interleukin-12 (hIL-12) gene induce the enhanced antitumor potency. Our results showed that oncolytic adenovirus carrying hIL-12 (AdCN205-IL12) could produce high levels of hIL-12 in liver cancer cells, as compared with replication-defective adenovirus expressing hIL-12 (Ad-IL12). AdCN205-IL12 could specifically induce cytotoxocity to liver cancer cells. Combination of CIK cells with AdCN205-IL12 could induce higher antitumor activity to liver cancer cells in vitro than that induced by either CIK or AdCN205-IL12 alone, or combination of CIK and control vector AdCN205-GFP. Furthermore, treatment of the established liver tumors with the combined therapy of CIK cells and AdCN205-IL12 resulted in tumor regression and long-term survival. High level expression of hIL-12 in tumor tissues could increase traffic of CIK cells to tumor tissues and enhance their antitumor activities. Our study provides a novel strategy for the therapy of cancer by the combination of CIK adoptive immunotherapy with oncolytic adenovirus-mediated transfer of immune stimulatory molecule hIL-12.
    PLoS ONE 09/2012; 7(9):e44802. DOI:10.1371/journal.pone.0044802 · 3.23 Impact Factor
Show more