Autophagosome formation: core machinery and adaptations.

Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology and Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
Nature Cell Biology (Impact Factor: 20.06). 11/2007; 9(10):1102-9. DOI: 10.1038/ncb1007-1102
Source: PubMed

ABSTRACT Eukaryotic cells employ autophagy to degrade damaged or obsolete organelles and proteins. Central to this process is the formation of autophagosomes, double-membrane vesicles responsible for delivering cytoplasmic material to lysosomes. In the past decade many autophagy-related genes, ATG, have been identified that are required for selective and/or nonselective autophagic functions. In all types of autophagy, a core molecular machinery has a critical role in forming sequestering vesicles, the autophagosome, which is the hallmark morphological feature of this dynamic process. Additional components allow autophagy to adapt to the changing needs of the cell.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Increasing evidence indicates that metabolism is implicated in the control of stem cell identity. Here, we demonstrate that embryonic stem cell (ESC) behaviour relies on a feedback loop that involves the non-essential amino acid L-Proline (L-Pro) in the modulation of the Gcn2-Eif2α-Atf4 amino acid starvation response (AAR) pathway that in turn regulates L-Pro biosynthesis. This regulatory loop generates a highly specific intrinsic shortage of L-Pro that restricts proliferation of tightly packed domed-like ESC colonies and safeguards ESC identity. Indeed, alleviation of this nutrient stress condition by exogenously provided L-Pro induces proliferation and modifies the ESC phenotypic and molecular identity towards that of mesenchymal-like, invasive pluripotent stem cells. Either pharmacological inhibition of the prolyl-tRNA synthetase by halofuginone or forced expression of Atf4 antagonises the effects of exogenous L-Pro. Our data provide unprecedented evidence that L-Pro metabolism and the nutrient stress response are functionally integrated to maintain ESC identity.Cell Death and Differentiation advance online publication, 10 April 2015; doi:10.1038/cdd.2015.24.
    Cell death and differentiation 04/2015; DOI:10.1038/cdd.2015.24 · 8.39 Impact Factor
  • Source
    Renal Failure 01/2015; · 0.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy as a conserved catabolic pathway can respond to reactive oxygen species (ROS) and plays an important role in degrading oxidized proteins in plants under various stress conditions. However, how ROS regulates autophagy in response to oxidative stresses is largely unknown. Here, we show that autophagy-related protein 3 (ATG3) interacts with the cytosolic glyceraldehyde-3-phosphate dehydrogenases (GAPCs) to regulate autophagy in Nicotiana benthamiana plants. We found that oxidative stress inhibits the interaction of ATG3 with GAPCs. Silencing of GAPCs significantly activates ATG3-dependent autophagy, while overexpression of GAPCs suppresses autophagy in N. benthamiana plants. Moreover, silencing of GAPCs enhances N gene-mediated cell death and plant resistance against both incompatible pathogens Tobacco mosaic virus and Pseudomonas syringae pv tomato DC3000, as well as compatible pathogen P. syringae pv tabaci. These results indicate that GAPCs have multiple functions in the regulation of autophagy, hypersensitive response, and plant innate immunity. © 2015 American Society of Plant Biologists. All rights reserved.
    The Plant Cell 03/2015; DOI:10.1105/tpc.114.134692 · 9.58 Impact Factor

Full-text (2 Sources)

Available from
Jun 1, 2014