Article

Co-expression of adjacent genes in yeast cannot be simply attributed to shared regulatory system

Institute of Information Science, Academia Sinica, Taipei 115, Taiwan.
BMC Genomics (Impact Factor: 4.04). 02/2007; 8:352. DOI: 10.1186/1471-2164-8-352
Source: PubMed

ABSTRACT Adjacent gene pairs in the yeast genome have a tendency to express concurrently. Sharing of regulatory elements within the intergenic region of those adjacent gene pairs was often considered the major mechanism responsible for such co-expression. However, it is still in debate to what extent that common transcription factors (TFs) contribute to the co-expression of adjacent genes. In order to resolve the evolutionary aspect of this issue, we investigated the conservation of adjacent pairs in five yeast species. By using the information for TF binding sites in promoter regions available from the MYBS database http://cg1.iis.sinica.edu.tw/~mybs/, the ratios of TF-sharing pairs among all the adjacent pairs in yeast genomes were analyzed. The levels of co-expression in different adjacent patterns were also compared.
Our analyses showed that the proportion of adjacent pairs conserved in five yeast species is relatively low compared to that in the mammalian lineage. The proportion was also low for adjacent gene pairs with shared TFs. Particularly, the statistical analysis suggested that co-expression of adjacent gene pairs was not noticeably associated with the sharing of TFs in these pairs. We further proposed a case of the PAC (polymerase A and C) and RRPE (rRNA processing element) motifs which co-regulate divergent/bidirectional pairs, and found that the shared TFs were not significantly relevant to co-expression of divergent promoters among adjacent genes.
Our findings suggested that the commonly shared cis-regulatory system does not solely contribute to the co-expression of adjacent gene pairs in yeast genome. Therefore we believe that during evolution yeasts have developed a sophisticated regulatory system that integrates both TF-based and non-TF based mechanisms(s) for concurrent regulation of neighboring genes in response to various environmental changes.

0 Followers
 · 
138 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using cDNA microarray analysis, we previously identified a set of differentially expressed genes in primary breast tumors based on the status of estrogen and progesterone receptors. In the present study, we performed an integrated computer-assisted and manual search of potential estrogen response element (ERE) binding sites in the promoter region of these genes to characterize their potential to be regulated by estrogen receptors (ER). Publicly available databases were used to annotate the position of these genes in the genome and to extract a 5'flanking region 2 kb upstream to 2 kb downstream of the transcription start site for transcription binding site analysis. The search for EREs and other binding sites was performed using several publicly available programs. Overall, approximately 40% of the genes analyzed were potentially able to be regulated by estrogen via ER. In addition, 17% of these genes are located very close to other genes organized in a head-to-head orientation with less than 1.0 kb between their transcript units, sharing a bidirectional promoter, and could be classified as bidirectional gene pairs. Using quantitative real-time PCR, we further investigated the effects of 17β-estradiol and antiestrogens on the expression of the bidirectional gene pairs in MCF-7 breast cancer cells. Our results showed that some of these gene pairs, such as TXNDC9/EIF5B, GALNS/TRAPPC2L, and SERINC1/PKIB, are modulated by 17β-estradiol via ER in MCF-7 breast cancer cells. Here, we also characterize the promoter region of potential ER-regulated genes and provide new information on the transcriptional regulation of bidirectional gene pairs.
    Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas / Sociedade Brasileira de Biofisica ... [et al.] 02/2011; 44(2):112-22. DOI:10.1590/S0100-879X2010007500149 · 1.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Eukaryotic chromosomes are not randomly distributed in the interphase nucleus, but instead occupy distinct territories. Nonetheless, the genome-wide relationships of gene regulation to gene nuclear location remain poorly understood in yeast. In the three-dimensional view of gene regulation, we found that a considerable number of transcription factors (TFs) regulate genes that are colocalized in the nucleus. Colocalized TF target genes are more strongly coregulated compared with the other TF target genes. Target genes of chromatin regulators are also colocalized. These results demonstrate that colocalization of coregulated genes is a common process, and three-dimensional gene positioning is an important part of gene regulation. Our findings will have implications in understanding nuclear architecture and function.
    Nucleic Acids Research 08/2011; 40(1):27-36. DOI:10.1093/nar/gkr689 · 8.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dengue virus infection causes significant morbidity and mortality in humans world-wide. The Aedes aegypti mosquito is the major vector that spreads dengue virus to humans. Interaction between dengue viruses and A. aegypti is a multi-factorial phenomena that is determined by both virus and mosquito genotypes. Although, studies have suggested significant association of mosquito vectorial capacity with population variation of dengue virus, specifications of the vector factors that may influence vector-virus compatibility are very limited in the literature. Recently, we have shown that a large number of genes are differentially expressed between MOYO-S (susceptible) and MOYO-R (refractory) A. aegypti strains upon infection with dengue virus (JAM-1409 genotype). In the current study, we show that specific intrinsic features of A. aegypti genes are significantly associated with 'responsiveness' of mosquito genes to dengue infection. Binomial logistic regression analysis further reveals differential marginal effects of these features on gene responsiveness of mosquitoes to the viral infection. Thus, our result shows that intrinsic features of genes significantly affect differential expression of A. aegypti genes to dengue infection. The information will benefit further investigations on evolution of genes among natural populations of A. aegypti conferring differential susceptibility to dengue virus.
    Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases 05/2012; 12(7):1413-8. DOI:10.1016/j.meegid.2012.04.027 · 3.26 Impact Factor