Article

Persistence of full glacial conditions in the central Pacific until 15,000 years ago.

Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement, CNRS-Aix Marseille Université, 13545 Aix en Provence, France.
Nature (Impact Factor: 38.6). 11/2007; 449(7162):591-4. DOI: 10.1038/nature06142
Source: PubMed

ABSTRACT The magnitude of atmospheric cooling during the Last Glacial Maximum and the timing of the transition into the current interglacial period remain poorly constrained in tropical regions, partly because of a lack of suitable climate records. Glacial moraines provide a method of reconstructing past temperatures, but they are relatively rare in the tropics. Here we present a reconstruction of atmospheric temperatures in the central Pacific during the last deglaciation on the basis of cosmogenic 3He ages of moraines and numerical modelling of the ice cap on Mauna Kea volcano, Hawaii--the only highland in the central Pacific on which moraines that formed during the last glacial period are preserved. Our reconstruction indicates that the Last Glacial Maximum occurred between 19,000 and 16,000 years ago in this region and that temperatures at high elevations were about 7 degrees C lower than today during this interval. Glacial retreat began about 16,000 years ago, but temperatures were still about 6.5 degrees C lower than today until 15,000 years ago. When combined with estimates of sea surface temperatures in the central Pacific Ocean, our reconstruction indicates that the lapse rate during the Last Glacial Maximum was higher than at present, which is consistent with the proposal that the atmosphere was drier at that time. Furthermore, the persistence of full glacial conditions until 15,000 years ago is consistent with the relatively late and abrupt transition to warmer temperatures in Greenland, indicating that there may have been an atmospheric teleconnection between the central Pacific and North Atlantic regions during the last deglaciation.

0 Bookmarks
 · 
87 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many geomorphologic applications, notably glacier chronologies, require improvements in both the precision and the accuracy of the cosmogenic dating tool. Of particular importance is the need to better constrain the spatial variability of the cosmogenic nuclides production rates at high elevation and low latitudes. One strategy that can be adopted for this is to couple absolute calibrations, from independently dated surfaces, with cross-calibration studies, performed by measuring several cosmogenic nuclides in the same rock.
    Earth and Planetary Sciences Letters 11/2013; 382:140-149. · 4.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An evaluation of the historical record of volcanic eruptions shows that subaerial volcanism increases globally by two to six times above background levels between 12 ka and 7 ka, during the last deglaciation. Increased volcanism occurs in deglaciating regions. Causal mechanisms could include an increase in magma production owing to the mantle decompression caused by ablation of glaciers and ice caps or a more general pacing of when eruptions occur by the glacial variability. A corollary is that ocean ridge volcanic production should decrease with the rising sea level during deglaciation, with the greatest effect at slow spreading ridges.CO2 output from the increased subaerial volcanism appears large enough to influence glacial/interglacial CO2 variations. We estimate subaerial emissions during deglaciation to be between 1000 and 5000 Gt of CO2 above the long term average background flux, assuming that emissions are proportional to the frequency of eruptions. After accounting for equilibration with the ocean, this additional CO2 flux is consistent in timing and magnitude with ice core observations of a 40 ppm increase in atmospheric CO2 concentration during the second half of the last deglaciation. Estimated decreases in CO2 output from ocean ridge volcanoes compensate for only 20% of the increased subaerial flux.If such a large volcanic output of CO2 occurs, then volcanism forges a positive feedback between glacial variability and atmospheric CO2 concentrations: deglaciation increases volcanic eruptions, raises atmospheric CO2, and causes more deglaciation. Such a positive feedback may contribute to the rapid passage from glacial to interglacial periods. Conversely, waning volcanic activity during an interglacial could lead to a reduction in CO2 and the onset of an ice age. Whereas glacial/interglacial variations in CO2 are generally attributed to oceanic mechanisms, it is suggested that the vast carbon reservoirs associated with the solid Earth may also play an important role.
    Earth and Planetary Science Letters 01/2009; · 4.72 Impact Factor
  • Source
    Geological Society of America Bulletin 01/2010; 122:1360-1377. · 4.40 Impact Factor

Full-text (2 Sources)

View
52 Downloads
Available from
May 31, 2014