Mesenchymal stem cells within tumour stroma promote breast cancer metastasis.

Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.
Nature (Impact Factor: 42.35). 11/2007; 449(7162):557-63. DOI: 10.1038/nature06188
Source: PubMed

ABSTRACT Mesenchymal stem cells have been recently described to localize to breast carcinomas, where they integrate into the tumour-associated stroma. However, the involvement of mesenchymal stem cells (or their derivatives) in tumour pathophysiology has not been addressed. Here, we demonstrate that bone-marrow-derived human mesenchymal stem cells, when mixed with otherwise weakly metastatic human breast carcinoma cells, cause the cancer cells to increase their metastatic potency greatly when this cell mixture is introduced into a subcutaneous site and allowed to form a tumour xenograft. The breast cancer cells stimulate de novo secretion of the chemokine CCL5 (also called RANTES) from mesenchymal stem cells, which then acts in a paracrine fashion on the cancer cells to enhance their motility, invasion and metastasis. This enhanced metastatic ability is reversible and is dependent on CCL5 signalling through the chemokine receptor CCR5. Collectively, these data demonstrate that the tumour microenvironment facilitates metastatic spread by eliciting reversible changes in the phenotype of cancer cells.


Available from: Kornelia Polyak, Apr 17, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Continued improvements in the understanding and application of mesenchymal stem cells (MSC) have revolutionized tissue engineering. This is particularly true within the field of skeletal regenerative medicine. However, much remains unknown regarding the native origins of MSC, the relative advantages of different MSC populations for bone regeneration, and even the biologic safety of such unpurified, grossly characterized cells. This review will first summarize the initial discovery of MSC, as well as the current and future applications of MSC in bone tissue engineering. Next, the relative advantages and disadvantages of MSC isolated from distinct tissue origins are debated, including the MSC from adipose, bone marrow, and dental pulp, among others. The perivascular origin of MSC is next discussed. Finally, we briefly comment on pluripotent stem cell populations and their possible application in bone tissue engineering. While continually expanding, the field of MSC-based bone tissue engineering and regeneration shows potential to become a clinical reality in the not-so-distant future.
    Stem Cells and Cloning: Advances and Applications 01/2015; 8:39-48. DOI:10.2147/SCCAA.S48423
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The capacity of cancer cells to undergo epithelial-to-mesenchymal transition (EMT) is now considered a hallmark of tumor progression, and it is known that interactions between cancer cells and mesenchymal stem cells (MSCs) of tumor microenvironment may promote this program. Herein, we demonstrate that MSC-conditioned medium (MSC-CM) is a potent inducer of EMT in melanoma cells. The EMT profile acquired by MSC-CM-exposed melanoma cells is characterized by an enhanced level of mesenchymal markers, including TGFβ/TGFβ-receptors system upregulation, by increased invasiveness and uPAR expression, and in vivo tumor growth. Silencing TGFβ in MSC is found to abrogate ability of MSC to promote EMT characteristics in melanoma cells, together with uPAR expression, and this finding is strengthened using an antagonist peptide of TGFβRIII, the so-called P17. Finally, we demonstrate that the uPAR antisense oligonucleotide (uPAR aODN) may inhibit EMT of melanoma cells either stimulated by exogenous TGFβ or MSC-CM. Thus, uPAR upregulation in melanoma cells exposed to MSC-medium drives TGFβ-mediated EMT. On the whole, TGFβ/uPAR dangerous liaison in cancer cell/MSC interactions may disclose a new strategy to abrogate melanoma progression. Mesenchymal stem cell (MSC)-conditioned medium induces EMT-like profile in melanoma. MSC-derived TGFβ promotes uPAR and TGFβ/TGFβ-receptor upregulation in melanoma. TGFβ gene silencing in MSCs downregulates uPAR expression and EMT in melanoma. uPAR downregulation prevents MSC-induced EMT-like profile in melanoma cells. Inhibition of the dangerous TGFβ/uPAR relationship might abrogate melanoma progression.
    Journal of Molecular Medicine 02/2015; DOI:10.1007/s00109-015-1266-2 · 4.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer stem cells (CSCs) are tumor cells that have the principal properties of self-renewal, clonal tumor initiation capacity, and clonal long-term repopulation potential. CSCs reside in niches, which are anatomically distinct regions within the tumor microenvironment. These niches maintain the principle properties of CSCs, preserve their phenotypic plasticity, protect them from the immune system, and facilitate their metastatic potential. In this perspective, we focus on the CSC niche and discuss its contribution to tumor initiation and progression. Since CSCs survive many commonly employed cancer therapies, we examine the prospects of targeting the niche components as preferable therapeutic targets. Copyright © 2015 Elsevier Inc. All rights reserved.