Is giant cell interstitial pneumonitis synonymous with hard metal lung disease?

American Journal of Respiratory and Critical Care Medicine (Impact Factor: 11.99). 11/2007; 176(8):834; author reply 834-5. DOI: 10.1164/ajrccm.176.8.834
Source: PubMed
  • [Show abstract] [Hide abstract]
    ABSTRACT: Occupational and environmental lung diseases are a group of pulmonary disorders caused by inhalation of harmful particles, mists, vapors or gases. Mineralogical analysis is not generally required in the diagnosis of most cases of these diseases. Apart from minerals that are encountered rarely or only in specific occupations, small quantities of mineral dusts are present in the healthy lung. As such when mineralogical analysis is required, quantitative or semi-quantitative methods must be employed. An electron probe microanalyzer with wavelength dispersive spectrometer (EPMA-WDS) enables analysis of human lung tissue for deposits of elements by both qualitative and semi-quantitative methods. Since 1993, we have analyzed 162 cases of suspected occupational and environmental lung diseases using an EPMA-WDS. Our institute has been accepting online requests for elemental analysis of lung tissue samples by EPMA-WDS since January 2011. Hard metal lung disease is an occupational interstitial lung disease that primarily affects workers exposed to the dust of tungsten carbide. The characteristic pathological findings of the disease are giant cell interstitial pneumonia (GIP) with centrilobular fibrosis, surrounded by mild alveolitis with giant cells within the alveolar space. EPMA-WDS analysis of biopsied lung tissue from patients with GIP has demonstrated that tungsten and/or cobalt is distributed in the giant cells and centrilobular fibrosing lesion in GIP. Pneumoconiosis, caused by amorphous silica, and acute interstitial pneumonia, associated with the giant tsunami, were also elementally analyzed by EPMA-WDS. The results suggest that commonly found elements, such as silicon, aluminum, and iron, may cause occupational and environmental lung diseases.
    Respiratory investigation. 01/2014; 52(1):5-13.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Interstitial lung diseases (ILD) encompass a group of diseases with a wide range of etiologies and a variety of tissue reactions within the lung. In many instances, a careful evaluation of the tissue reactions will result in a specific diagnosis or at least in a narrow range of differentials, which will assist the clinician to arrive at a definite diagnosis, when combining our interpretation with the clinical presentation of the patient and high-resolution computed tomography. In this review, we will exclude granulomatous pneumonias as well as vascular diseases (primary arterial pulmonary hypertension and vasculitis); however, pulmonary hypertension as a complication of interstitial processes will be mentioned. Few entities of pneumoconiosis presenting as an interstitial process will be included, whereas those with granulomatous reactions will be excluded. Drug reactions will be touched on within interstitial pneumonias, but will not be a major focus. In contrast to the present-day preferred descriptive pattern recognition, it is the author's strong belief that pathologists should always try to dig out the etiology from a tissue specimen and not being satisfied with just a pattern description. It is the difference of sorting tissue reactions into boxes by their main pattern, without recognizing minor or minute reactions, which sometimes will guide one to the correct etiology-oriented interpretation. In the author's personal perspective, tissue reactions can even be sorted by their timeliness, and therefore, ordered by the time of appearance, providing an insight into the pathogenesis and course of a disease. Also, underlying immune mechanisms will be discussed briefly as far as they are essential to understand the disease.
    Archiv für Pathologische Anatomie und Physiologie und für Klinische Medicin 12/2012; · 2.56 Impact Factor
  • Source
    American Journal of Respiratory and Critical Care Medicine 12/2011; 184(11):1315-7. · 11.04 Impact Factor