Identification of novel membrane-binding domains in multiple yeast Cdc42 effectors.

Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
Molecular Biology of the Cell (Impact Factor: 4.55). 01/2008; 18(12):4945-56. DOI: 10.1091/mbc.E07-07-0676
Source: PubMed

ABSTRACT The Rho-type GTPase Cdc42 is a central regulator of eukaryotic cell polarity and signal transduction. In budding yeast, Cdc42 regulates polarity and mitogen-activated protein (MAP) kinase signaling in part through the PAK-family kinase Ste20. Activation of Ste20 requires a Cdc42/Rac interactive binding (CRIB) domain, which mediates its recruitment to membrane-associated Cdc42. Here, we identify a separate domain in Ste20 that interacts directly with membrane phospholipids and is critical for its function. This short region, termed the basic-rich (BR) domain, can target green fluorescent protein to the plasma membrane in vivo and binds PIP(2)-containing liposomes in vitro. Mutation of basic or hydrophobic residues in the BR domain abolishes polarized localization of Ste20 and its function in both MAP kinase-dependent and independent pathways. Thus, Cdc42 binding is required but is insufficient; instead, direct membrane binding by Ste20 is also required. Nevertheless, phospholipid specificity is not essential in vivo, because the BR domain can be replaced with several heterologous lipid-binding domains of varying lipid preferences. We also identify functionally important BR domains in two other yeast Cdc42 effectors, Gic1 and Gic2, suggesting that cooperation between protein-protein and protein-membrane interactions is a prevalent mechanism during Cdc42-regulated signaling and perhaps for other dynamic localization events at the cell cortex.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Actin filaments are dynamically reorganized to accommodate ever-changing cellular needs for intracellular transport, morphogenesis, and migration. Formins, a major family of actin nucleators, are believed to function as direct effectors of Rho GTPases, such as the polarity regulator Cdc42p. However, the presence of extensive redundancy has made it difficult to assess the in vivo significance of the low-affinity Rho GTPase-formin interaction and specifically whether Cdc42p polarizes the actin cytoskeleton via direct formin binding. Here we exploit a synthetically rewired budding yeast strain to eliminate the redundancy, making regulation of the formin Bni1p by Cdc42p essential for viability. Surprisingly, we find that direct Cdc42p-Bni1p interaction is dispensable for Bni1p regulation. Alternative paths linking Cdc42p and Bni1p via "polarisome" components Spa2p and Bud6p are also collectively dispensable. We identify a novel regulatory input to Bni1p acting through the Cdc42p effector, Gic2p. This pathway is sufficient to localize Bni1p to the sites of Cdc42p action and promotes a polarized actin organization in both rewired and wild-type contexts. We suggest that an indirect mechanism linking Rho GTPases and formins via Rho effectors may provide finer spatiotemporal control for the formin-nucleated actin cytoskeleton.
    Molecular biology of the cell 08/2012; 23(19):3814-26. DOI:10.1091/mbc.E12-05-0400 · 5.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Asymmetric cell division, which includes cell polarization and cytokinesis, is essential for generating cell diversity during development. The budding yeast Saccharomyces cerevisiae reproduces by asymmetric cell division, and has thus served as an attractive model for unraveling the general principles of eukaryotic cell polarization and cytokinesis. Polarity development requires G-protein signaling, cytoskeletal polarization, and exocytosis, whereas cytokinesis requires concerted actions of a contractile actomyosin ring and targeted membrane deposition. In this chapter, we discuss the mechanics and spatial control of polarity development and cytokinesis, emphasizing the key concepts, mechanisms, and emerging questions in the field.
    Genetics 06/2012; 191(2):347-87. DOI:10.1534/genetics.111.132886 · 4.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Deleted in Liver Cancer 1 (DLC1) is a GTPase-activating protein (GAP) with specificity for RhoA, RhoB, and RhoC that is frequently deleted in various tumor types. By inactivating these small GTPases, DLC1 controls actin cytoskeletal remodeling and biological processes such as cell migration and proliferation. Here we provide evidence that DLC1 binds to phosphatidylinositol-4,5-bisphosphate (PI(4,5)P(2)) through a previously unrecognized polybasic region (PBR) adjacent to its RhoGAP domain. Importantly, PI(4,5)P(2)-containing membranes are shown to stimulate DLC1 GAP activity in vitro. In living cells, a DLC1 mutant lacking an intact PBR inactivated Rho signaling less efficiently and was severely compromised in suppressing cell spreading, directed migration, and proliferation. We therefore propose that PI(4,5)P(2) is an important cofactor in DLC1 regulation in vivo and that the PBR is essential for the cellular functions of the protein.
    Molecular biology of the cell 09/2009; 20(20):4400-11. DOI:10.1091/mbc.E09-03-0247 · 5.98 Impact Factor


1 Download
Available from