GRB-7 facilitates HER-2/Neu-mediated signal transduction and tumor formation

Division of Hematology and Medical Oncology, Oregon Health Sciences University, Portland VA Medical Center, Portland, OR 97239, USA.
Carcinogenesis (Impact Factor: 5.27). 04/2008; 29(3):473-9. DOI: 10.1093/carcin/bgm221
Source: PubMed

ABSTRACT Growth factor receptor-bound protein-7 (GRB-7), an adaptor molecule, can interact with multiple signal transduction molecules. GRB-7 is amplified concurrently with HER-2/Neu in most, if not all, of breast cancer with chromosome 17q11-21 amplification. GRB-7 gene amplification is associated with RNA over-expression. We show GRB-7 protein is over-expressed by immunoblotting in breast cancer cell lines and primary breast tumors with HER-2/Neu protein over-expression. Over-expression of GRB-7 in MCF-7 breast cancer cells that over-express HER-2/Neu leads to activation of tyrosine phosphorylation of HER-2/Neu. Knockdown of GRB-7 expression in SKBR-3 breast cancer cells with naturally occurring HER-2/Neu gene amplification decreases tyrosine phosphorylation of HER-2/Neu. Activation of HER-2/Neu phosphorylation is associated with increase in tyrosine phosphorylation of phosphoinositide-specific lipase C-gamma-1 (PLC-gamma-1) and recruitment of PLC-gamma-1 to HER-2/Neu protein molecule. Activation of downstream protein kinase C (PKC) pathway is evidenced by increase in the phosphorylation of a common PKC substrate-myristoylated alanine-rich protein kinase C substrate (MARCKS). In addition, over-expression of GRB-7 in MCF-7 breast cancer cells that over-express HER-2/Neu leads to activation of AKT phosphorylation. Knockdown of GRB-7 expression in MB-453 and SKBR-3 breast cancer cells results in decrease in AKT phosphorylation. GRB-7 over-expression therefore facilitates activation of phosphorylation of HER-2/Neu and AKT in breast cancer cells with HER-2/Neu over-expression. GRB-7 over-expression in MCF-7 cells over-expressing HER-2/Neu leads to morphologic change of cells and promotes tumor xenograft growth in nude mice. GRB-7 over-expression therefore plays pivotal roles in activating signal transduction and promoting tumor growth in breast cancer cells with chromosome 17q11-21 amplification.

Download full-text


Available from: Shiuh-Wen Luoh, Aug 29, 2015
  • Source
    • "In addition to HER-2, there are a number of other chromosome 17q11-12 genes, including closely neighboring GRB7, which may be amplified and over-expressed concurrently with HER-2 (Luoh 2002; Kao & Pollack 2006; Kauraniemi & Kallioniemi 2006; Bai & Luoh 2008; Stein et al. 1994; Glynn et al. 2010). The GRB7 gene codes for a multi-domain signal transduction molecule, and is known to play important roles in tumor growth and migration (Shen & Guan 2004). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Testing for human epidermal growth factor receptor-2 (HER-2) in breast cancer is performed by either immunohistochemistry (IHC) or in situ hybridization (ISH). The growth factor receptor-bound protein-7 (GRB7) gene is in close proximity to HER-2 on chromosome 17q11-12 and codes a signal transduction molecule shown to be an independent adverse marker in breast cancer. HER-2 and GRB7 protein expression from 613 frozen breast tumors was determined by Western analysis. HER-2 protein results were confirmed with IHC. Commercial HER-2 FISH was performed on a subset of tumors with multi-probe FISH used to assess the extent of HER-2 gene amplification. mRNA expression was determined by Multi-plex RT-PCR. Seven tumors with GRB7 protein over-expression scored HER-2 FISH amplified but had no HER-2 protein over-expression. Four of the 7 tumors showed elevated GRB7 but not HER-2 mRNA over-expression. The breast cancer cell line HCC3153 did not over-express HER-2 protein but showed HER-2 FISH amplification of a limited segment around the HER-2 gene. Ten breast cancer tumors from the TCGA database had gene copy number increases around HER-2 without HER-2 mRNA or protein over-expression. A subset of human breast cancers that test positive with FISH for HER-2 gene amplification do not over-express HER-2 protein. One mechanism for this discordance is the incomplete amplification of the smallest HER-2 region of chromosome 17q11-12, which includes GRB7. HER-2 gene amplification without protein over-expression is clinically significant because patients with such tumors are unlikely to benefit from HER-2 targeted therapy.
    SpringerPlus 08/2013; 2(1):386. DOI:10.1186/2193-1801-2-386
  • Source
    • "GRB7 is a known adaptor which relays signals from cell surface receptors to specific downstream signaling cascades via the protein-protein interaction of its Src-homology 2 (SH2) domain to a variety of tyrosine kinases [7], [40], [41]. We and others have previously reported that GRB7 is frequently overexpressed and promotes cell proliferation, cell migration and cell invasion of human cancers [10], [12], [42]. Given to its important roles as signal transduction molecules in activating oncogenic signaling pathways, numerous studies have attempted to develop inhibitors targeting to the SH2 domain of GRB7 in order to inhibiting aberrant activation of related signaling activities and eliminating cancer cells [43], [44], [45], [46]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Ovarian cancer is a highly lethal disease with poor prognosis and especially in high-grade tumor. Emerging evidence has reported that aberrant upregulation and activation of GRB7, ERK as well as FOXM1 are closely associated with aggresivenesss of human cancers. However, the interplay between these factors in the pathogenesis of human cancers still remains unclear. In this study, we found that GRB7 (P<0.0001), ERK phosphorylation (P<0.0001) and FOXM1 (P = 0.001) were frequently increased and associated with high-grade tumors, as well as a high tendency in association with advanced stage ovarian cancer by immunohistochemical analysis. Intriguingly, the expressions of GRB7 (P<0.0001), ERK phosphorylation (P<0.001) and FOXM1 (P<0.001) showed a significant stepwise increase pattern along Grade 1 to Grade 3 ovarian cancers. Biochemical studies using western blot analysis demonstrated that enforced expression or knockdown of GRB7 showed GRB7 could elevate the levels of ERK phosphorylation and FOXM1, whereas enforced expression of FOXM1 could not alter levels of GRB7 and ERK phosphorylation. But inhibition of ERK signaling by U0126 or PD98059 could reduce the level of FOXM1 in GRB7-overexpressing ovarian cancer cells, suggesting that GRB7, ERK and FOXM1 are regulated orderly. Moreover, inhibition of ERK activity by U0126 or PD98059, or decreased FOXM1 expression by Thiostrepton significantly inhibited cell migration/invasion, tumor growth in vitro and in vivo. Collectively, our findings confer that targeting GRB7/ERK/FOXM1 signaling cascade may be a promising molecular therapeutic choice in combating ovarian cancer.
    PLoS ONE 12/2012; 7(12):e52578. DOI:10.1371/journal.pone.0052578 · 3.23 Impact Factor
  • Source
    • "Growth factor receptor-bound protein 7 (GRB7) is an adaptor-type signaling protein that binds to a variety of cell surface receptor tyrosine kinases including EGFR and ERBB2 [50] to mediate downstream signaling pathways. GRB7 may facilitate ERBB2-mediated signal transduction and tumor formation [51] and has been suggested as a therapeutic target [19]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Around 20% of breast cancers (BC) show ERBB2 gene amplification and overexpression of the ERBB2 tyrosine kinase receptor. They are associated with a poor prognosis but can benefit from targeted therapy. A better knowledge of these BCs, genomically and biologically heterogeneous, may help understand their behavior and design new therapeutic strategies. We defined the high resolution genome and gene expression profiles of 54 ERBB2-amplified BCs using 244K oligonucleotide array-comparative genomic hybridization and whole-genome DNA microarrays. Expression of ERBB2, phosphorylated ERBB2, EGFR, IGF1R and FOXA1 proteins was assessed by immunohistochemistry to evaluate the functional ERBB2 status and identify co-expressions. First, we identified the ERBB2-C17orf37-GRB7 genomic segment as the minimal common 17q12-q21 amplicon, and CRKRS and IKZF3 as the most frequent centromeric and telomeric amplicon borders, respectively. Second, GISTIC analysis identified 17 other genome regions affected by copy number aberration (CNA) (amplifications, gains, losses). The expression of 37 genes of these regions was deregulated. Third, two types of heterogeneity were observed in ERBB2-amplified BCs. The genomic profiles of estrogen receptor-positive (ER+) and negative (ER-) ERBB2-amplified BCs were different. The WNT/β-catenin signaling pathway was involved in ER- ERBB2-amplified BCs, and PVT1 and TRPS1 were candidate oncogenes associated with ER+ ERBB2-amplified BCs. The size of the ERBB2 amplicon was different in inflammatory (IBC) and non-inflammatory BCs. ERBB2-amplified IBCs were characterized by the downregulated and upregulated mRNA expression of ten and two genes in proportion to CNA, respectively. IHC results showed (i) a linear relationship between ERBB2 gene amplification and its gene and protein expressions with a good correlation between ERBB2 expression and phosphorylation status; (ii) a potential signaling cross-talk between EGFR or IGF1R and ERBB2, which could influence response of ERBB2-positive BCs to inhibitors. FOXA1 was frequently coexpressed with ERBB2 but its expression did not impact on the outcome of patients with ERBB2-amplified tumors. We have shown that ER+ and ER- ERBB2-amplified BCs are different, distinguished ERBB2 amplicons in IBC and non-IBC, and identified genomic features that may be useful in the design of alternative therapeutical strategies.
    BMC Cancer 10/2010; 10(1):539. DOI:10.1186/1471-2407-10-539 · 3.32 Impact Factor
Show more