Article

Human angiogenin is a neuroprotective factor and amyotrophic lateral sclerosis associated angiogenin variants affect neurite extension/pathfinding and survival of motor neurons.

Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.
Human Molecular Genetics (Impact Factor: 7.69). 02/2008; 17(1):130-49. DOI: 10.1093/hmg/ddm290
Source: PubMed

ABSTRACT Amyotrophic lateral sclerosis (ALS) is a late onset neurodegenerative disorder affecting upper and lower motor neurons (MNs). The molecular mechanisms underlying ALS are poorly understood. Mutations in SOD1 is one of the known causes of ALS but occur only in a very small number of cases of ALS. Interestingly, mutations in human angiogenin (hANG), a member of the ribonuclease A (RNase A) superfamily known to be involved in neovascularization, have been recently reported in patients with ALS, but the effects of these mutations on MN differentiation and survival has not been investigated. We have used the well-characterized pluripotent P19 embryonal carcinoma (EC) cell culture model of neuro-ectodermal differentiation to study the effects of hANG-ALS variants on MN differentiation and survival. Here we report that P19 EC cells induced to differentiate in the presence of hANG and hANG-ALS-associated variants internalize the wild-type and variant proteins. The P19 EC cells differentiate to form neurons but the ability of the neurites to extend and make contacts with neighbouring neurites is compromised when treated with the hANG-ALS variants. In addition, hANG-ALS variants also have a cytotoxic effect on MNs leading to their degeneration. hANG was able to protect neurons from hypoxia-induced cell death, but the variants of hANG implicated in ALS lacked the neuroprotective activity. Our findings show that ANG plays an important role in neurite extension/pathfinding and survival providing a causal link between mutations in hANG and ALS.

0 Bookmarks
 · 
64 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glia and microglia in particular elaborate pro-inflammatory molecules which play key roles in CNS disorders from neuropathic pain and epilepsy to neurodegenerative diseases. Microglia respond also to pro-inflammatory signals released from other non-neuronal cells, mainly those of immune origin such as mast cells. The latter are found in most tissues, are CNS resident, and traverse the blood-spinal cord and blood-brain barriers when barrier compromise results from CNS pathology. Growing evidence of mast cell - glia communication opens new perspectives for development of therapies targeting neuroinflammation by differentially modulating activation of non-neuronal cells normally controlling neuronal sensitization - both peripherally and centrally. Mast cells and glia possess endogenous homeostatic mechanisms/molecules that can be up-regulated as a result of tissue damage or stimulation of inflammatory responses. Such molecules include the N-acylethanolamine family. One such member, N-palmitoylethanolamine is proposed to have a key role in maintenance of cellular homeostasis in the face of external stressors provoking, for example, inflammation. N-palmitoylethanolamine has proven efficacious in mast-cell mediated experimental models of acute and neurogenic inflammation. This review will provide an overview of recent progress relating to the pathobiology of neuroinflammation, the role of microglia, neuro-immune interactions involving mast cells and the possibility that mast cell-microglia cross talk contributes to the exacerbation of acute symptoms of chronic neurodegenerative disease and accelerate disease progression, as well as promote pain transmission pathways. We will conclude by considering the therapeutic potential of treating systemic inflammation or blockade of signalling pathways from the periphery to the brain in such settings. This article is protected by copyright. All rights reserved.
    Immunology 09/2013; · 3.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Angiogenin (ANG) undergoes nuclear translocation and promotes ribosomal RNA (rRNA) transcription thereby enhancing cell growth and proliferation. However, the mode of action of ANG in stimulating rRNA transcription is unclear. Here, we show that ANG enhances the formation of RNA polymerase I (Pol I) pre-initiation complex at the ribosomal DNA (rDNA) promoter. ANG binds at the upstream control element (UCE) of the promoter and enhances promoter occupancy of RNA Pol I as well as the selectivity factor SL1 components TAFI 48 and TAFI 110. We also show that ANG increases the number of actively transcribing rDNA by epigenetic activation through promoter methylation and histone modification. ANG binds to histone H3, inhibits H3K9 methylation, and activates H3K4 methylation as well as H4 acetylation at the rDNA promoter. These data suggest that one of the mechanisms by which ANG stimulates rRNA transcription is through an epigenetic activation of rDNA promoter. J. Cell. Physiol. © 2013 Wiley Periodicals, Inc.
    Journal of Cellular Physiology 10/2013; · 4.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genetic insights into the pathophysiology of amyotrophic lateral sclerosis (ALS) are untangling the clinical heterogeneity that may contribute to poor clinical trial outcomes and thus to a lack of effective treatments. Mutations in a large number of genes, including SOD1, C9ORF72, TARDBP, FUS, VAPB, VCP, UBQLN2, ALS2, SETX, OPTN, ANG, and SPG11, are thought to cause ALS, whereas others, including ATAXN2, GRN, HFE, NEFH, UNC13A, and VEGF, appear to be disease-modifying genes. Epigenetic influences may also play important roles. An improved understanding of ALS genetics should lead to better trial designs, insights into common molecular pathways, and better characterization of preclinical models. New genetic sequencing techniques, which use high-throughput methods to assess variants across the genome or exome, may facilitate rational patient stratification for clinical trials and permit more individualized prognostic information and treatment decisions in clinical care. © 2014 Wiley Periodicals, Inc.
    Muscle & Nerve 02/2014; · 2.31 Impact Factor

Full-text

View
0 Downloads