Article

Mortality of large trees and lianas following experimental drought in an Amazon forest.

Woods Hole Research Center, 149 Woods Hole Road, Falmouth, Massachusetts 02540-1644, USA.
Ecology (Impact Factor: 5). 09/2007; 88(9):2259-69. DOI: 10.1890/06-1046.1
Source: PubMed

ABSTRACT Severe drought episodes such as those associated with El Niño Southern Oscillation (ENSO) events influence large areas of tropical forest and may become more frequent in the future. One of the most important forest responses to severe drought is tree mortality, which alters forest structure, composition, carbon content, and flammability, and which varies widely. This study tests the hypothesis that tree mortality increases abruptly during drought episodes when plant-available soil water (PAW) declines below a critical minimum threshold. It also examines the effect of tree size, plant life form (palm, liana, tree) and potential canopy position (understory, midcanopy, overstory) on drought-induced plant mortality. A severe, four-year drought episode was simulated by excluding 60% of incoming throughfall during each wet season using plastic panels installed in the understory of a 1-ha forest treatment plot, while a 1-ha control plot received normal rainfall. After 3.2 years, the treatment resulted in a 38% increase in mortality rates across all stems >2 cm dbh. Mortality rates increased 4.5-fold among large trees (>30 cm dbh) and twofold among medium trees (10-30 cm dbh) in response to the treatment, whereas the smallest stems were less responsive. Recruitment rates did not compensate for the elevated mortality of larger-diameter stems in the treatment plot. Overall, lianas proved more susceptible to drought-induced mortality than trees or palms, and potential overstory tree species were more vulnerable than midcanopy and understory species. Large stems contributed to 90% of the pretreatment live aboveground biomass in both plots. Large-tree mortality resulting from the treatment generated 3.4 times more dead biomass than the control plot. The dramatic mortality response suggests significant, adverse impacts on the global carbon cycle if climatic changes follow current trends.

Full-text

Available from: Paulo Moutinho, Mar 30, 2015
1 Bookmark
 · 
189 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Climate change is strong in the Amazon basin. Climate models consistently predict widespread warmer and drier conditions by the end of the 21st century. As a consequence, water stress will increase throughout the region. We here review current understanding of the impact of climate change on forests' distribution patterns, species diversity and ecosystem functioning of lowland rainforests in the Amazon basin. We reviewed 192 studies that provide empirical evidence, historical information and theoretical models. Over millions of years rainforests expansions and contractions have been accompanied by changes in the diversity and productivity of forests. In the future, drought will produce forest contractions along the forest edges and the savanna ecotone, causing an extensive savannization, particularly in the east. In terms of diversity, warming will reduce plant species survival by decreasing their productivity, but extinctions may also occur as a result of vegetation disequilibrium, as many plants, dispersal and pollinator species will fail to track changing climate; mild drought kills understory trees and severe drought may eliminate canopy trees as well. Severe droughts will thus produce directional changes in species composition, although these shifts may vary among forests on different soil types. In terms of ecosystem functioning , droughts will reduce root growth and standing biomass and may shift the Amazonian forest from being CO 2 sinks to become CO 2 sources. Physiological and ecological responses to warming and the feedback between vegetation and climate are still not completely understood. In particular, experimental assays that allow direct conclusions on the response of Amazonian plants to the predicted climatic conditions are needed. Such studies could make possible more reliable estimates of future climatic and vegetation responses. Resumen El cambio climático es intenso en la cuenca Amazónica. Los modelos climáticos predicen condiciones más secas y cálidas para finales del siglo 21. Como consecuencia, el estrés hídrico aumentará a través de la región. Aquí revisamos el conocimiento actual del impacto del cambio climático en los patrones de distribución, diversidad y funcionamiento de los bosques en la cuenca Amazónica. Examinamos 192 estudios basados en evidencia empírica, información histórica y modelos teóricos.
    The Botanical Review 02/2015; DOI:10.1007/s12229-014-9149-8 · 2.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Atmospheric carbon dioxide records indicate that the land surface has acted as a strong global carbon sink over recent decades1, 2, with a substantial fraction of this sink probably located in the tropics3, particularly in the Amazon4. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historical evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity5. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale1, 2, and is contrary to expectations based on models6
    Nature 03/2015; 519(7543):344. DOI:10.1038/nature14283, · 42.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Atmospheric carbon dioxide records indicate that the land surface has acted as a strong global carbon sink over recent decades1, 2, with a substantial fraction of this sink probably located in the tropics3, particularly in the Amazon4. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historical evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity5. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale1, 2, and is contrary to expectations based on models6.
    Nature 03/2015; 519(7543):344–348. DOI:10.1038/nature14283 · 42.35 Impact Factor