Skeletal muscle remodeling.

Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA.
Current Opinion in Rheumatology (Impact Factor: 5.07). 12/2007; 19(6):542-9. DOI: 10.1097/BOR.0b013e3282efb761
Source: PubMed

ABSTRACT In skeletal muscle, environmental demands activate signal transduction pathways that ultimately promote adaptive changes in myofiber cytoarchitecture and protein composition. Recent advances in determining the factors involved in these signal transduction pathways provide insight into possible therapeutic methods to remodel skeletal muscle.
Advances in genetic engineering have allowed the introduction or depletion of factors within the myofiber, facilitating the evaluation of signaling factors during muscle remodeling. Using transgenic mouse models, activation of specific signaling pathways promoted type I oxidative myofibers, increased the fatigue resistance of muscle, increased skeletal muscle mass and ameliorated muscle injury in myopathic mouse models. Moreover, new technologies are being used to generate global gene and protein expression profiles to identify new factors involved in skeletal muscle remodeling. Finally, small RNAs, microRNAs, are emerging as powerful regulators of gene expression in most tissues, including skeletal muscle. Recent findings predict that targeted delivery of miRNAs will specifically manipulate genes and if used therapeutically will revolutionize clinical medicine.
Developing drugs to target signaling pathways associated with remodeling myofibers provides a possible therapeutic approach to combat skeletal muscle disease. In addition, genome-wide technologies can identify new biomarkers capable of diagnosing myopathies and determine a patient's response to therapy. Furthermore, therapeutic strategies are being designed to target microRNAs in anticipation of blocking gene repression correlated with muscle pathology.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The mammalian RNA-binding protein AUF1 (AU-binding factor 1, also known as heterogeneous nuclear ribonucleoprotein D, hnRNP D) binds to numerous mRNAs and influences their post-transcriptional fate. Given that many AUF1 target mRNAs encode muscle-specific factors, we investigated the function of AUF1 in skeletal muscle differentiation. In mouse C2C12 myocytes, where AUF1 levels rise at the onset of myogenesis and remain elevated throughout myocyte differentiation into myotubes, RIP (RNP immunoprecipitation) analysis indicated that AUF1 binds prominently to Mef2c (myocyte enhancer factor 2c) mRNA, which encodes the key myogenic transcription factor Mef2c. By performing mRNA half-life measurements and polysome distribution analysis, we found that AUF1 associated with the 3' UTR of Mef2c mRNA and promoted Mef2c translation without affecting Mef2c mRNA stability. In addition, AUF1 promoted Mef2c gene transcription via a lesser-known role of AUF1 in transcriptional regulation. Importantly, lowering AUF1 delayed myogenesis, while ectopically restoring Mef2c expression levels partially rescued the impairment of myogenesis seen after reducing AUF1 levels. We propose that Mef2c is a key effector of the myogenesis program promoted by AUF1.
    Molecular and Cellular Biology 06/2014; · 5.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MyoD and myogenin are myogenic transcription factors preferentially expressed in adult fast and slow muscles, respectively. Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder in which motor neuron loss is accompanied by muscle denervation and paralysis. Studies suggest that muscle phenotype may influence ALS disease progression. Here we demonstrate that myogenin gene transfer into muscle supports spinal cord motor neuron survival and muscle endplate innervation in the G93A SOD1 fALS mice. On the other hand, MyoD gene transfer decreases survival and enhances motor neuron degeneration and muscle denervation. Although an increase in motor neuron count is associated with increased succinic dehydrogenase staining in the muscle, muscle overexpression of PGC-1α does not improve survival or motor function. Our study suggests that postnatal muscle modification influences disease progression and demonstrates that the muscle expression of myogenic and metabolic regulators differentially impacts neuropathology associated with disease progression in the G93A SOD1 fALS mouse model.
    Nature Communications 12/2013; 4:2906. · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to determine the effects of melatonin intervention on gastrocnemius remodeling in rats with collagenase-induced knee instability. Type VII collagenase was injected into the right knee to induce joint laxity with cartilage destruction. Melatonin (MT; 10 mg/kg) injection was performed twice daily subcutaneously, and treadmill exercise (Ex; 11 m/min) was conducted for 1 h/day at a frequency of 5 days/week for 4 weeks. The gastrocnemius mass, which was reduced with collagenase injection only (Veh), was increased with collagenase injection with melatonin treatment with and without exercise in the early phase, and the mass in both limbs was significantly different in the Veh compared with the MT group. However, there was an increase in the relative muscle weight to body weight ratio in the Veh group at the advanced stage. Insulin-like growth factor receptor (IGF-IR) was downregulated in the Veh group, whereas IGF-IR was upregulated in the MT and MT+Ex groups. Joint laxity induced enhancement of autophagic proteolysis (LC3 II) in the muscle, which was recovered to values similar to those in the normal control group (Con) compared with those in the MT and MT+Ex groups. Although intra-articular collagenase increased the total C/EBP homology protein (CHOP) levels at 1 week and decreased them at 4 weeks in the Veh group, CHOP in the nucleus was upregulated continuously. Prolonged melatonin treatment with and without exercise intervention suppressed nuclear localization of ATF4 and CHOP with less activation of caspase-3, at the advanced phase. Moreover, the interventions promoted the expression of myosin heavy chain (MHC) isoforms under the control of myogenin. Concomitant with a beneficial effect of melatonin with and without exercise, length of step length of the saline-injected limb and the collagenase-injected supporting side was maintained at values similar to those in control rats. Taken together, the findings demonstrate that melatonin with and without exercise accelerate remodeling of the gastrocnemius through inhibition of nuclear CHOP in rats with collagenase-induced knee instability. This article is protected by copyright. All rights reserved.
    Journal of Pineal Research 12/2013; · 7.81 Impact Factor

Full-text (2 Sources)

Available from
Aug 8, 2014