Constitutive expression of p21H-Ras(Val12) in neurons induces increased axonal size and dendritic microtubule density in vivo.

Department of Neuroanatomy, Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany.
Journal of Neuroscience Research (Impact Factor: 2.97). 01/2004; 74(6):868-74. DOI: 10.1002/jnr.10838
Source: PubMed

ABSTRACT The small G protein p21Ras is a key signal transducer mediating cellular growth and proliferation responses to extracellular stimuli. We investigated by electron microscopy the effects of augmented p21Ras activity on neuronal processes and microtubule arrangement in vivo. We used transgenic mice with a neuron-specific overexpression of p21H-RasVal12, which starts postnatally around Day 15. Axonal and dendritic diameters and the numerical density of dendritic microtubules were analyzed at postnatal Day 12 before the onset of transgene expression and in adult mice. In adult transgenic mice, calibers of both axons (corpus callosum) and dendrites (layers II/III of somatosensory cortex) were enlarged by about 57% and 79%, respectively. The increase in dendritic calibers was associated with an increment in the amount of microtubules. Even in dendrites of equivalent diameters, the number of microtubules was higher in transgenic mice compared to that in wild-type mice suggesting an elevated microtubule density. Changes in process diameters or microtubule density were not observed at postnatal Day 12 before relevant transcription of transgenic p21H-RasVal12. The present results extend previous findings on neuronal hypertrophy as a consequence of p21H-RasVal12 expression and suggest a profound influence on the dendritic microtubule network.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Neurotrophic actions are critically controlled and transmitted to cellular responses by the small G protein Ras which is therefore essential for normal functioning and plasticity of the nervous system. The present study summarises findings of recent studies on morphological changes in the neocortex of synRas mice expressing Val12-Ha-Ras in vivo under the control of the rat synapsin I promoter. In the here reported model (introduced by Heumann et al. [J. Cell Biol. 151 (2000) 1537]), transgenic Val12-Ha-Ras expression is confined to the pyramidal cell population and starts postnatally at a time, when neurons are postmitotic and their developmental maturation has been basically completed. Expression of Val12-Ha-Ras results in a significant enlargement of pyramidal neurons. Size, complexity and spine density of dendritic trees are increased, which leads, finally, to cortical expansion. However, the main morphological design principles of 'transgenic' pyramidal cells remain preserved. In addition to somato-dendritic changes, expression of Val12-Ha-Ras in pyramidal cells induces augmented axon calibres and upregulates the establishment of efferent boutons. Despite the enlargement of cortical size, the overall density of terminals representing intra- or interhemispheric, specific and non-specific afferents is unchanged or even higher in transgenic mice suggesting a significant increase in the total afferent input to the neocortex. Although interneurons do not express the transgene and are therefore excluded from direct, intrinsic Val12-Ha-Ras effects, they respond with morphological adaptations to structural changes. Thus, dendritic arbours of interneurons are extended to follow the cortical expansion and basket cells establish a denser inhibitory innervation of 'transgenic' pyramidal cells perikarya. It is concluded that expression of Val12-Ha-Ras in pyramidal neurons results in remodelling of neocortical structuring which strongly implicates a crucial involvement of Ras in cortical plasticity.
    International Journal of Developmental Neuroscience 06/2004; 22(3):165-73. · 2.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The small G protein Ras, which is a molecular switch in neurotrophic signal transduction, is implicated in synaptic plasticity and synapse development during ontogeny and in the adult nervous system. To characterise the involvement of Ras-dependent signaling in synaptogenesis, the cortical synapse-to-neuron ratio was investigated in synRas mice overexpressing Val12-Ha-Ras in postmitotic neurons (introduced by Heumann, 2000). The number of synapses per neuron was analysed in cortical layers II/III of the somatosensory cortex at different stages of postnatal development by stereological methods. The synapse-to-neuron ratio was still identical in wild-type and synRas mice at postnatal day 4 before the onset of transgene expression. At P12, P47 and in the adult, analyses revealed a significant increase in the synapse-to-neuron ratio in synRas mice which correlated with the strength of transgene expression. The data presented here provide evidence that Ras activity might be profoundly involved in synaptogenesis by reinforcing the formation or maintenance of synapses during the development and in the adult.
    Journal of Neural Transmission 07/2005; 112(6):751-61. · 3.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present study we show that overexpression of constitutively active Ras amplifies the dendritic remodeling observed when animals were allowed to be physically active. The monomeric G-protein Ras is a key molecular trigger of distinct signal transduction pathways that play an important role in proper functioning of neurons. Our previous studies on Ras-transgenic synRas mice have demonstrated a considerable impact of Ras on dendritic growth, extension and synaptic connectivity of neurons. Voluntary access to a running wheel resulted in enlargement of hippocampal pyramidal cell dendrites in wild-type mice as expected. However, constitutively elevated Ras activity further enhanced dendritic growth and branching especially of apical arbors. The resultant dendritic surface gain was paralleled by a significant increase in dendritic spine density. Since Ras is crucially involved in signaling and cascades of neurotrophins that are elevated after physical activity, these results strongly suggest an important role of Ras in dendritic dynamics during induced neuronal remodeling.
    International journal of developmental neuroscience: the official journal of the International Society for Developmental Neuroscience 07/2009; 27(4):407-11. · 2.03 Impact Factor