Article

Distinct mechanisms of ethanol potentiation of local and paracapsular GABAergic synapses in the rat basolateral amygdala

Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
Journal of Pharmacology and Experimental Therapeutics (Impact Factor: 3.86). 02/2008; 324(1):251-60. DOI: 10.1124/jpet.107.128728
Source: PubMed

ABSTRACT Converging lines of behavioral and pharmacological evidence suggest that GABAergic synapses in the basolateral amygdala (BLA) may play an integral role in mediating the anxiolytic effects of ethanol (EtOH). Since anxiety is thought to play an important role in the development of, and relapse to, alcoholism, elucidating the mechanisms through which EtOH modulates GABAergic synaptic transmission in the BLA may be fundamental in understanding the etiology of this disease. A recent study in mice has shown that principal cells within the BLA receive inhibitory input from two distinct types of GABAergic interneurons: a loosely distributed population of local interneurons and a dense network of paracapsular (pcs) GABAergic cells clustered along the external capsule border. Here, we sought to confirm the presence of these two populations of GABAergic synapses in the rat BLA and evaluate their ethanol sensitivity. Our results suggest that rat BLA pyramidal cells receive distinct inhibitory input from local and pcs interneurons and that EtOH potentiates both populations of synapses, albeit via distinct mechanisms. EtOH enhancement of local inhibitory postsynaptic currents (IPSCs) was associated with a significant decrease in paired-pulse ratio (PPR) and was significantly potentiated by the GABA(B) receptor antagonist SCH 50911 [(+)-(S)-5,5-dimethylmorpholinyl-2-acetic acid], consistent with a facilitation of GABA release from presynaptic terminals. Conversely, EtOH enhancement of pcs IPSCs did not alter PPR and was not enhanced by SCH 50911 but was inhibited by blockade of noradrenergic receptors. Collectively, these data reveal that EtOH can potentiate GABAergic inhibitory synaptic transmission in the rat BLA through at least two distinct pathways.

0 Followers
 · 
66 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The central amygdala is a critical brain region for many aspects of alcohol dependence. Much of the work examining the mechanisms by which the central amygdala mediates the development of alcohol dependence has focused on the interaction of acute and chronic ethanol with central amygdala corticotropin releasing factor signaling. This work has led to a great deal of success in furthering the general understanding of central amygdala neurocircuitry and its role in alcohol dependence. Much of this work has primarily focused on the hypothesis that ethanol utilizes endogenous corticotropin releasing factor signaling to upregulate inhibitory GABAergic transmission in the central amygdala. Work that is more recent suggests that corticotropin releasing factor also plays an important role in mediating anxiety-like behaviors via the enhancement of central amygdala glutamatergic transmission, implying that ethanol/corticotropin releasing factor interactions may modulate excitatory neurotransmission in this brain region. In addition, a number of studies utilizing optogenetic strategies or transgenic mouse lines have begun to examine specific central amygdala neurocircuit dynamics and neuronal subpopulations to better understand overall central amygdala neurocircuitry and the role of neuronal subtypes in mediating anxiety-like behaviors. This review will provide a brief update on this literature and describe some potential future directions that may be important for the development of better treatments for alcohol addiction. Copyright © 2015 Elsevier Inc. All rights reserved.
    Alcohol (Fayetteville, N.Y.) 01/2015; 49(3). DOI:10.1016/j.alcohol.2015.01.006 · 2.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The lateral amygdala nucleus (La) is known as a gateway for emotional learning that interfaces sensory inputs from the cortex and the thalamus. In the La, inhibitory GABAergic inputs control the strength of sensory inputs and interfere with the initial step of the acquisition of fear memory. In the present study, we investigated the spatial and temporal patterns of the inhibitory responses in mouse La using voltage-sensitive dye imaging. Stimulating the external capsule (EC) induced large and long-lasting hyperpolarizing signals in the La. We focused on these hyperpolarizing signals, revealing the origins of the inhibitory inputs by means of surgical cuts on the possible afferent pathways with four patterns. Isolating the medial branch of EC (ECmed), but not the lateral branch of EC (EClat), from the La strongly suppressed the induction of the hyperpolarization. Interestingly, isolating the ECmed from the caudate putamen did not suppress the hyperpolarization, while the surgical cut of the ECmed fiber tract moderately suppressed it. Glutamatergic antagonists completely suppressed the hyperpolarizing signals induced by the stimulation of EC. When directly stimulating the dorsal, middle or ventral part of the ECmed fiber tract in the presence of glutamatergic antagonists, only the stimulation in the middle part of the ECmed caused hyperpolarization. These data indicate that the GABAergic neurons in the medial intercalated cluster (m-ITC), which receive glutamatergic excitatory input from the ECmed fiber tract, send inhibitory afferents to the La. This pathway might have inhibitory effects on the acquisition of fear memory. Copyright © 2015. Published by Elsevier Ireland Ltd.
    Neuroscience Letters 01/2015; 590. DOI:10.1016/j.neulet.2015.01.079 · 2.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ethanol actions in the amygdala formation may underlie in part the reinforcing effects of ethanol consumption. Previously a physiological phenomenon in the basolateral amygdala (BLA) that is dependent on neuronal network activity, compound postsynaptic potentials (cPSPs) were characterized. Effects of acute ethanol application on the frequency of cPSPs were subsequently investigated. Whole cell patch clamp recordings were performed from identified projection neurons in a rat brain slice preparation containing the amygdala formation. Acute ethanol exposure had complex effects on cPSP frequency, with both increases and decreases dependent on concentration, duration of exposure and age of the animal. Ethanol produces complex biphasic effects on synaptically-driven network activity in the BLA. These findings may relate to subjective effects of ethanol on arousal and anxiolysis in humans.
    12/2012; 16(4):265-270. DOI:10.12717/DR.2012.16.4.265