Iron homeostasis and toxicity in retinal degeneration.

F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, 305 Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA 19104, USA.
Progress in Retinal and Eye Research (Impact Factor: 9.9). 12/2007; 26(6):649-73. DOI: 10.1016/j.preteyeres.2007.07.004
Source: PubMed

ABSTRACT Iron is essential for many metabolic processes but can also cause damage. As a potent generator of hydroxyl radical, the most reactive of the free radicals, iron can cause considerable oxidative stress. Since iron is absorbed through diet but not excreted except through menstruation, total body iron levels buildup with age. Macular iron levels increase with age, in both men and women. This iron has the potential to contribute to retinal degeneration. Here we present an overview of the evidence suggesting that iron may contribute to retinal degenerations. Intraocular iron foreign bodies cause retinal degeneration. Retinal iron buildup resulting from hereditary iron homeostasis disorders aceruloplasminemia, Friedreich's ataxia, and panthothenate kinase-associated neurodegeneration cause retinal degeneration. Mice with targeted mutation of the iron exporter ceruloplasmin have age-dependent retinal iron overload and a resulting retinal degeneration with features of age-related macular degeneration (AMD). Post mortem retinas from patients with AMD have more iron and the iron carrier transferrin than age-matched controls. Over the past 10 years much has been learned about the intricate network of proteins involved in iron handling. Many of these, including transferrin, transferrin receptor, divalent metal transporter-1, ferritin, ferroportin, ceruloplasmin, hephaestin, iron-regulatory protein, and histocompatibility leukocyte antigen class I-like protein involved in iron homeostasis (HFE) have been found in the retina. Some of these proteins have been found in the cornea and lens as well. Levels of the iron carrier transferrin are high in the aqueous and vitreous humors. The functions of these proteins in other tissues, combined with studies on cultured ocular tissues, genetically engineered mice, and eye exams on patients with hereditary iron diseases provide clues regarding their ocular functions. Iron may play a role in a broad range of ocular diseases, including glaucoma, cataract, AMD, and conditions causing intraocular hemorrhage. While iron deficiency must be prevented, the therapeutic potential of limiting iron-induced ocular oxidative damage is high. Systemic, local, or topical iron chelation with an expanding repertoire of drugs has clinical potential.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Iron accumulation is associated with age-related neurodegenerations and may contribute to age-related increased susceptibility of neurons to damage. We compared young and old rodent retinas to assess iron homeostasis during normal aging and the effects of increased iron on the susceptibility of retinal neurons to degeneration. Retinal iron was significantly increased with age. Quantitative RT-PCR showed that transferrin and ferritin genes were upregulated in the aged retina. At the protein level, we found decreased transferrin, and increased transferrin receptor, ferritin, ferroportin, and ceruloplasmin in the aged retina. These results support an increased steady state of iron with age in the retina. We tested susceptibility of retinal neurons with increased intracellular iron to damage in vitro. Exposure of RGC-5 cells to increased iron potentiated the neurotoxicity induced by paraquat, glutamate, and TNFalpha. Our results demonstrate that iron homeostasis in the retina is altered with age and suggest that iron accumulation, due to altered levels of iron-regulatory proteins in the aged retina, could be a susceptibility factor in age-related retinal diseases.
    Neurobiology of aging 03/2008; 30(11):1865-76. DOI:10.1016/j.neurobiolaging.2008.01.002 · 4.85 Impact Factor
  • Source
    Age Related Macular Degeneration - The Recent Advances in Basic Research and Clinical Care, 01/2012; , ISBN: 978-953-307-864-9
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The significantly increased copper and oxidative stress levels are characteristic hallmarks of cancer cells. These differences provide a unique opportunity for selective targeting of cancer cells. D-penicillamine (D-pen) has been proposed to generate reactive oxygen species (ROS) in presence of copper. Therefore, these studies were aimed at investigating the potential application of a currently marketed copper chelator, D-pen, as a novel cytotoxic anti-cancer agent. D-pen was shown to produce ROS, specifically hydrogen peroxide (H2O2), in the presence of cupric sulfate through a copper catalyzed oxidation reaction. During this process D-pen was converted to D-pen disulfide. The experimental proof of the H2O2 generation was conclusively shown with the aid of a novel High Performance Liquid Chromatography (HPLC) assay. The in-vitro cytotoxicity of D-pen co-incubated with cupric sulfate was examined in human beast cancer (MCF-7 and BT474) and leukemia cells (HL-60, HL-60/VCR, and HL-60/ADR). D-pen was shown to cause concentration dependent cytotoxicity in both leukemia and breast cancer cells. A direct correlation between the detection of intracellular ROS and cytotoxicity was established. The treatment of D-pen plus cupric sulfate resulted in a significant reduction in the intracellular thiol content. D-pen is highly hydrophilic and is rapidly eliminated from the body; therefore to improve the intracellular uptake and to protect the thiol group of D-pen, we carried out the synthesis and the in-vitro characterization of a novel gelatin-D-pen conjugate. It was shown that D-pen alone does not enter cells. Confocal microscopy was employed to exhibit the uptake of the novel gelatin-D-pen conjugate by cancer cells. As the cancer cells in-vitro do not accumulate the same levels of copper as reported for cancer cells in-vivo, cancer cells were pre-treated with cupric sulfate to simulate the elevated copper levels. The cupric sulfate pretreatment resulted in reduced thiol level and significantly increased cellular copper content compared to untreated cells. Whereas both free D-pen and gelatin-D-pen conjugate lacked cytotoxicity in un-treated cells, both agents caused concentration dependent cytotoxicity in cupric sulfate pre-treated leukemia cells. Therefore, it was shown that the administration of D-pen as polymer conjugate would potentially provide cytotoxicity and specificity in the treatment of cancer.