Article

Diagnostic stability in very young children with autism spectrum disorders.

Department of Psychology, University of Connecticut, 406 Babbidge Rd., Storrs, CT 06269-1020, USA.
Journal of Autism and Developmental Disorders (Impact Factor: 3.34). 05/2008; 38(4):606-15. DOI: 10.1007/s10803-007-0427-8
Source: PubMed

ABSTRACT Autism Spectrum Disorders (ASD) diagnosis in very young children may be delayed due to doubts about validity. In this study, 77 children received a diagnostic and developmental evaluation between 16 and 35 months and also between 42 and 82 months. Diagnoses based on clinical judgment, Childhood Autism Rating Scale, and the Autism Diagnostic Observation Schedule were stable over time. Diagnoses made using the Autism Diagnostic Interview were slightly less stable. According to clinical judgment, 15 children (19%) moved off the autism spectrum by the second evaluation; none moved onto the spectrum. Results indicate diagnostic stability at acceptable levels for diagnoses made at age 2. Movement off the spectrum may reflect true improvement based on maturation, intervention, or over-diagnosis at age 2.

Download full-text

Full-text

Available from: Juhi Pandey, Jun 26, 2015
0 Followers
 · 
153 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Study to Explore Early Development (SEED) is a multi-site case-control study designed to explore the relationship between autism spectrum disorder (ASD) phenotypes and etiologies. The goals of this paper are to (1) describe the SEED algorithm that uses the Autism Diagnostic Interview-Revised (ADI-R) and Autism Diagnostic Observation Schedule (ADOS) to classify children with ASD, (2) examine psychometric properties of different ASD classification methods, including the SEED method that incorporates rules for resolving ADI-R and ADOS discordance, and (3) determine whether restricted interests and repetitive behaviors were noted for children who had instrument discordance resolved using ADI-R social and communication scores. Results support the utility of SEED criteria when well-defined groups of children are an important clinical or research outcome.
    Journal of Autism and Developmental Disorders 10/2014; 45(5). DOI:10.1007/s10803-014-2287-3 · 3.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This article suggests future directions for research aimed at improving our understanding of the etiology and pathophysiology of autism spectrum disorder (ASD) as well as pharmacologic and psychosocial interventions for ASD across the lifespan. The past few years have witnessed unprecedented transformations in the understanding of ASD neurobiology, genetics, early identification, and early intervention. However, recent increases in ASD prevalence estimates highlight the urgent need for continued efforts to translate novel ASD discoveries into effective interventions for all individuals with ASD. In this article we highlight promising areas for ongoing and new research expected to quicken the pace of scientific discovery and ultimately the translation of research findings into accessible and empirically supported interventions for those with ASD. We highlight emerging research in the following domains as particularly promising and pressing: (a) preclinical models, (b) experimental therapeutics, (c) early identification and intervention, (d) psychiatric comorbidities and the Research Domain Criteria initiative, (e) ecological momentary assessment, (f) neurotechnologies, and (g) the needs of adults with ASD. Increased research emphasis in these areas has the potential to hasten the translation of knowledge on the etiological mechanisms of ASD to psychosocial and biological interventions to reduce the burden of ASD on affected individuals and their families.
    Journal of Clinical Child & Adolescent Psychology 09/2014; 43(5):828-843. DOI:10.1080/15374416.2014.945214 · 1.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disabilities with various etiologies, but with a heritability estimate of more than 90%. Although the strong correlation between autism and genetic factors has been long established, the exact genetic background of ASD remains unclear. A number of genetic syndromes manifest ASD at higher than expected frequencies compared to the general population. These syndromes account for more than 10% of all ASD cases and include tuberous sclerosis, fragile X, Down, neurofibromatosis, Angelman, Prader-Willi, Williams, Duchenne, etc. Clinicians are increasingly required to recognize genetic disorders in individuals with ASD, in terms of providing proper care and prognosis to the patient, as well as genetic counseling to the family. Vice versa, it is equally essential to identify ASD in patients with genetic syndromes, in order to ensure correct management and appropriate educational placement. During investigation of genetic syndromes, a number of issues emerge: impact of intellectual disability in ASD diagnoses, identification of autistic subphenotypes and differences from idiopathic autism, validity of assessment tools designed for idiopathic autism, possible mechanisms for the association with ASD, etc. Findings from the study of genetic syndromes are incorporated into the ongoing research on autism etiology and pathogenesis; different syndromes converge upon common biological backgrounds (such as disrupted molecular pathways and brain circuitries), which probably account for their comorbidity with autism. This review paper critically examines the prevalence and characteristics of the main genetic syndromes, as well as the possible mechanisms for their association with ASD. © 2013 Wiley Periodicals, Inc.
    American Journal of Medical Genetics Part B Neuropsychiatric Genetics 06/2013; 162(4). DOI:10.1002/ajmg.b.32152 · 3.27 Impact Factor