Article

Longitudinal, quantitative assessment of amyloid, neuroinflammation, and anti-amyloid treatment in a living mouse model of Alzheimer's disease enabled by positron emission tomography.

Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Chiba 263-8555, Japan.
Journal of Neuroscience (Impact Factor: 6.91). 11/2007; 27(41):10957-68. DOI: 10.1523/JNEUROSCI.0673-07.2007
Source: PubMed

ABSTRACT We provide the first evidence for the capability of a high-resolution positron emission tomographic (PET) imaging system in quantitatively mapping amyloid accumulation in living amyloid precursor protein transgenic (Tg) mice. After the intravenous administration of N-[11C]methyl-2-(4'-methylaminophenyl)-6-hydroxybenzothiazole (or [11C]PIB for "Pittsburgh Compound-B") with high-specific radioactivity, the Tg mice exhibited high-level retention of radioactivity in amyloid-rich regions. PET investigation for Tg mice over an extended range of ages, including longitudinal assessments, demonstrated age-dependent increase in radioligand binding consistent with progressive amyloid accumulation. Reduction in amyloid levels in the hippocampus of Tg mice was also successfully monitored by multiple PET scans along the time course of anti-amyloid treatment using an antibody against amyloid beta peptide (Abeta). Moreover, PET scans with [18F]fluoroethyl-DAA1106, a radiotracer for activated glia, were conducted for these individuals parallel to amyloid imaging, revealing treatment-induced neuroinflammatory responses, the magnitude of which intimately correlated with the levels of pre-existing amyloid estimated by [11C]PIB. It is also noteworthy that the localization and abundance of [11C]PIB autoradiographic signals were closely associated with those of N-terminally truncated and modified Abeta, AbetaN3-pyroglutamate, in Alzheimer's disease (AD) and Tg mouse brains, implying that the detectability of amyloid by [11C]PIB positron emission tomography is dependent on the accumulation of specific Abeta subtypes. Our results support the usefulness of the small animal-dedicated PET system in conjunction with high-specific radioactivity probes and appropriate Tg models not only for clarifying the mechanistic properties of amyloidogenesis in mouse models but also for preclinical tests of emerging diagnostic and therapeutic approaches to AD.

0 Bookmarks
 · 
54 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to visualize early infarction in the rat brain after ischemia using a translocator protein (TSPO) (18 kDa) PET ligand [(11)C]DAC with ultra-high specific activity (SA) of 3670-4450 GBq/μmol. An infarction model of rat brain was prepared by ischemic surgery and evaluated 2 days after ischemia using small-animal PET and in vitro autoradiography. Early infarction with a small increase of TSPO expression in the brain was visualized using PET with high SA [(11)C]DAC (average 4060 GBq/μmol), but was not distinguished clearly with usually reported SA [(11)C]DAC (37 GBq/μmol). Infarction in the rat brain 4 days after ischemia was visualized using high and usually reported SAs [(11)C]DAC. Displacement experiments with unlabeled TSPO-selective AC-5216 or PK11195 diminished the difference in radioactivity between ipsilateral and contralateral sides, confirming that the increased uptake on the infracted brain was specific to TSPO. In vitro autoradiography with high SA [(11)C]DAC showed that the TSPO expression increased on early infarction in the rat brain. High SA [(11)C]DAC is a useful and sensitive biomarker for the visualization of early infarction and the characterization of TSPO expression which was slightly elevated in the infarcted brain using PET.
    NeuroImage 01/2011; 54(1):123-30. · 6.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Alzheimer's Disease Neuroimaging Initiative (ADNI) is providing critical new information on biomarkers in cognitively normal elderly, persons with mild cognitive impairment (MCI), and patients with mild Alzheimer's disease (AD). The data provide insights into the progression of the pathology of AD over time, assist in understanding which biomarkers might be most useful in clinical trials, and facilitate development of disease-modifying treatments. ADNI results are intended to support new AD treatment development; this report considers how ADNI information can be integrated in AD drug development programs. Cerebrospinal fluid (CSF) amyloid beta protein (Abeta) measures can be used in Phase I studies to detect any short term effects on Abeta levels in the CSF. Phase II studies may benefit most from biomarker measures that can inform decisions about Phase III. CSF Abeta levels, CSF total tau and phospho-tau measures, fluorodeoxyglucose positron emission tomography (FDG PET), Pittsburgh Compound B (PIB) amyloid imaging, or magnetic resonance imaging (MRI) may be employed to select patients in enriched trials or as outcomes for specific disease-modifying interventions. Use of biomarkers may allow Phase II trials to be conducted more efficiently with smaller populations of patients or shorted treatment times. New drug applications (NDAs) may include biomarker outcomes of phase III trials. ADNI patients are highly educated and are nearly all of Caucasian ethnicity limiting the generalizability of the results to other populations commonly included in global clinical trials. ADNI has inspired or collaborates with biomarker investigations worldwide and together these studies will provide biomarker information that can reduce development times and costs, improve drug safety, optimize drug efficacy, and bring new treatments to patients with or at risk for AD.
    Neurobiology of aging 05/2010; 31(8):1481-92. · 5.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The rising prevalence of Alzheimer's disease (AD) is rapidly becoming one of the largest health and economic challenges in the world. There is a growing need for the development and implementation of reliable biomarkers for AD that can be used to assist in diagnosis, inform disease progression, and monitor therapeutic efficacy. Preclinical models permit the evaluation of candidate biomarkers and assessment of pipeline agents before clinical trials are initiated and provide a translational opportunity to advance biomarker discovery. Fast and inexpensive data can be obtained from examination of peripheral markers, though they currently lack the sensitivity and consistency of imaging techniques such as MRI or PET. Plasma and cerebrospinal fluid (CSF) biomarkers in animal models can assist in development and implementation of similar approaches in clinical populations. These biomarkers may also be invaluable in decisions to advance a treatment to human testing. Longitudinal studies in AD models can determine initial presentation and progression of biomarkers that may also be used to evaluate disease-modifying efficacy of drugs. The refinement of biomarker approaches in preclinical systems will not only aid in drug development, but may facilitate diagnosis and disease monitoring in AD patients.
    American journal of neurodegenerative disease. 01/2013; 2(2):108-120.