Synergism of Toll-like receptor-induced interleukin-12p70 secretion by monocyte-derived dendritic cells is mediated through p38 MAPK and lowers the threshold of T-helper cell type 1 responses.

Cancer Research UK, Breast Cancer Biology Group, Thomas Guy House, 3rd floor, Guy's Hospital, London SE1 9RT, UK.
Cellular Immunology (Impact Factor: 1.87). 07/2007; 247(2):72-84. DOI: 10.1016/j.cellimm.2007.07.008
Source: PubMed

ABSTRACT Toll-like receptors (TLRs) recognise specific molecular signatures of pathogens and trigger antimicrobial defence responses. Thereby, two independent signalling pathways can be distinguished: The inflammatory signalling pathway acting via the adapter molecule MyD88, leading to the activation of nuclear factor-kappaB (NF-kappaB) and mitogen activated protein kinases (MAPK) such as SAPK/JNK and p38 MAPK and the interferon (IFN) dependent pathway that signals via TRIF and results in the production of IFN-alpha/beta. Several evolutionarily conserved molecular patterns are expressed by pathogens, leading to the question if concerted targeting of different TLRs may induce exaggerated immune responses by signalling via both TLR pathways. Here we report that monocyte-derived dendritic cells (MoDCs) combine and integrate signals received via the IFN-dependent pathway by engagement of TLR3 (poly I:C) and activation of TRIF with the MyD88-dependent pathway by ligation of TLR2 (PGN), TLR2/TLR6 (zymosan) and TLR5 (flagellin). The generally low IL-12p70 inducers resulted in combination of both pathways in cytokine levels similar to LPS, which acts via TLR4 and induces recruitment of MyD88/Tirap and TRIF/TRAM adapter proteins. The combination of TLR3 (poly I:C) or TLR4 (LPS) engagement with TLR8 (R848) ligation induced synergistic effects on cytokine production with a boost especially in IL-12p70 secretion. SB203580, a specific p38 MAPK inhibitor, completely blocked TLR ligand mediated IL-12p70 secretion, whereby specific inhibitors for SAPK/JNK (SP600125) and NF-kappaB (PDTC) only repressed partially the IL-12p70 secretion. Enhanced phosphorylation in poly I:C and R848 activated MoDCs revealed the critical contribution of p38 MAPK in synergistically induced IL-12p70 induction. Further investigation of primary and recall CD8+ T cell responses to the MUC(12-20) M1.2 peptide LLLLTVLTV and the influenza A virus matrix(58-66) peptide GILGFVFTL proved that synergistically activated MoDCs were superior compared with LPS or R848 alone. The results indicate that dendritic cells process, combine and integrate signals delivered by pathogens to launch effective adaptive immune responses.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: The imidazoquinoline compound R848 is a specific agonist of toll-like receptor (TLR) 7/TLR8 that has been used as an immunostimulant in humans against viral diseases. Although R848-induced immune response has been reported in teleost fish, the relevant mechanism is not clear. In this study, we investigated the antiviral potential and the signaling pathway of R848 in a model of Japanese flounder (Paralichthys olivaceus). We found that R848 was able to inhibit the replication of megalocytivirus, stimulated the proliferation of peripheral blood leukocytes (PBL), enhanced the expression of immune genes, and reduced apoptosis of PBL. When endosomal acidification was blocked by chloroquine (CQ), R848-mediated antiviral activity and immune response were significantly reduced. Likewise, inhibition of Myd88 activation markedly impaired the pro-proliferation and anti-apoptosis effect of R848. Cellular study showed that cultured founder cells treated with R848 exhibited augmented NF-κB activity, which, however, was dramatically reduced in the presence of CQ and Myd88 inhibitor. Furthermore, when NF-κB was inactivated, the effect of R848 on cell proliferation and apoptosis was significantly decreased. Taken together, these results indicate that R848 is an immunostimulant with antiviral property in a teleost species, and that the immune response of R848 is mediated by, most likely, TLR7/TLR8 signaling pathway, in which Myd88 and NK-κB play an essential role. Copyright © 2014. Published by Elsevier Ltd.
    Developmental & Comparative Immunology 12/2014; DOI:10.1016/j.dci.2014.11.018 · 3.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cross-talk within the innate immune pathways is highly complex and contains many unknowns. Here, we discuss the different combinations of PAMPs, together with the sequence, order, and dosage of consecutive PAMP challenges, which determine the nature of the immune response by macrophages. The engagement of different Toll-like receptor (TLR) ligands leads to quantitatively and qualitatively unique cytokine production, showing that TLR pathway crosstalk enables the innate immune system to orchestrate immediate local and global responses. It is likely that multiple pathways are involved in the regulation of cytokine synergy, including many that have yet to be discovered.
    International Reviews Of Immunology 06/2014; 33(6). DOI:10.3109/08830185.2014.921164 · 5.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Persistent viral infection, such as HCV infection, is the result of the inability of the host immune system to mount a successful antiviral response, as well as the escape strategies devised by the virus. Although each individual component of the host immune system plays important roles in antiviral immunity, the interactive network of immune cells as a whole acts against the virus. The innate immune system forms the first line of host defense against viral infection, and thus, virus elimination or chronic HCV infection is linked to the direct outcome of the interactions between the various innate immune cells and HCV. By understanding how the distinct components of the innate immune system function both individually and collectively during HCV infection, potential therapeutic targets can be identified to overcome immune dysfunction and control chronic viral infection.
    Journal of Leukocyte Biology 07/2014; 96(5). DOI:10.1189/jlb.4MR0314-141R · 4.30 Impact Factor