Precision-cut liver slices in culture as a tool to assess the physiological involvement of Kupffer cells in hepatic metabolism.

Unité de Pharmacocinétique, Métabolisme, Nutrition et Toxicologie, Département des Sciences Pharmaceutiques, Université Catholique de Louvain, PMNT-UCL 73 avenue Mounier, B-1200 Brussels, Belgium.
Comparative Hepatology (Impact Factor: 1.88). 02/2004; 3 Suppl 1:S45. DOI: 10.1186/1476-5926-2-S1-S45
Source: PubMed
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to investigate the role of Kupffer cell in glucose metabolism and hepatic insulin sensitivity in mice. Both phagocytic activity and secretory capacity of Kupffer cells were blunted 24h after GdCl3 administration. Glucose tolerance--evaluated following an oral glucose tolerance test (OGTT)--was higher in GdCl3-treated mice whereas fasting insulinemia and HOMA-IR index decreased. The improvement of glucose tolerance and hepatic insulin signalling pathway after inhibition of Kupffer cells was supported by a lower hepatic gluconeogenic enzyme expression and a higher phosphorylation of Akt upon insulin challenge. Moreover, fasting hyperglycemia, insulin resistance and impaired glucose tolerance--induced by high fat (HF) diet--were improved through chronic administration of GdCl3. Interestingly, the inhibition of Kupffer cell exerted antiobesity effects in HF-fed mice, and lowered hepatic steatosis. Therefore, strategies targeting Kupffer cell functions could be a promising approach to counteract obesity and related metabolic disorders.
    Biochemical and Biophysical Research Communications 08/2009; 385(3):351-6. · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The culture liver slices are mainly used to investigate drug metabolism and xenobiotic-mediated liver injuries while apoptosis and proliferation remain unexplored in this culture model. Here, we show a transient increase in LDH release and caspase activities indicating an ischemic injury during the slicing procedure. Then, caspase activities decrease and remain low in cultured slices demonstrating a low level of apoptosis. The slicing procedure is also associated with the G0/G1 transition of hepatocytes demonstrated by the activation of stress and proliferation signalling pathways including the ERK1/2 and JNK1/2/3 MAPKinases and the transient upregulation of c-fos. The cells further progress up to mid-G1 phase as indicated by the sequential induction of c-myc and p53 mRNA levels after the slicing procedure and at 24 h of culture, respectively. The stimulation by epidermal growth factor induces the ERK1/2 phosphorylation but fails to activate expression of late G1 and S phase markers such as cyclin D1 and Cdk1 indicating that hepatocytes are arrested in mid-G1 phase of the cell cycle. However, we found that combined stimulation by the proinflammatory cytokine tumor necrosis factor α and the epidermal growth factor promotes the commitment to DNA replication as observed in vivo during the liver regeneration.
    International journal of hepatology. 01/2012; 2012:785786.

Full-text (3 Sources)

Available from