Article

The thorough screening of the MUTYH gene in a large French cohort of sporadic colorectal cancers.

Laboratoire d'Etude de l'ADN, Faculté de Médecine de Nantes, 44035 France. <>
Genetic Testing (Impact Factor: 1.17). 02/2007; 11(4):373-9. DOI: 10.1089/gte.2007.0029
Source: PubMed

ABSTRACT The MUTYH gene encodes a key glycosylase of the base-excision repair system that is involved in maintaining genomic DNA stability against oxidative damage. Biallelic germline MUTYH mutations have been proved to greatly predispose to non-familial adenomatous polyposis (FAP) and non-hereditary non-polyposis colorectal cancer (HNPCC) familial recessive forms of colorectal cancer with multiple adenomas. To date, there is still much debate over the impact of monoallelic germline MUTYH mutations on colorectal carcinogenesis. To evaluate their role in the susceptibility to sporadic colon and rectum cancers, we screened 1024 French sporadic colorectal cancer cases and 1121 French healthy controls for Caucasian MUTYH-associated polyposis mutations, including already known mutations p.Gly382Asp and p.Tyr165Cys, and new mutation p.Val479Phe. We observed a nonstatistically significant association between these MUTYH mutations at a heterozygous state and an increase in colorectal cancer risk (odds ratio [OR] 1.26, 95% confidence interval [CI] 0.70-2.27). As a result, we conclude that heterozygous MUTYH mutations do not play a major role in sporadic colorectal carcinogenesis although a modest effect on this process cannot be ruled out.

1 Bookmark
 · 
146 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: defective DNA repair has a causal role in hereditary colorectal cancer (CRC). Defects in the base excision repair gene MUTYH are responsible for MUTYH-associated polyposis and CRC predisposition as an autosomal recessive trait. Numerous reports have suggested MUTYH mono-allelic variants to be low penetrance risk alleles. We report a large collaborative meta-analysis to assess and refine CRC risk estimates associated with bi-allelic and mono-allelic MUTYH variants and investigate age and sex influence on risk. MUTYH genotype data were included from 20 565 cases and 15 524 controls. Three logistic regression models were tested: a crude model; adjusted for age and sex; adjusted for age, sex and study. all three models produced very similar results. MUTYH bi-allelic carriers demonstrated a 28-fold increase in risk (95% confidence interval (CI): 6.95-115). Significant bi-allelic effects were also observed for G396D and Y179C/G396D compound heterozygotes and a marginal mono-allelic effect for variant Y179C (odds ratio (OR)=1.34; 95% CI: 1.00-1.80). A pooled meta-analysis of all published and unpublished datasets submitted showed bi-allelic effects for MUTYH, G396D and Y179C (OR=10.8, 95% CI: 5.02-23.2; OR=6.47, 95% CI: 2.33-18.0; OR=3.35, 95% CI: 1.14-9.89) and marginal mono-allelic effect for variants MUTYH (OR=1.16, 95% CI: 1.00-1.34) and Y179C alone (OR=1.34, 95% CI: 1.01-1.77). overall, this large study refines estimates of disease risk associated with mono-allelic and bi-allelic MUTYH carriers.
    British Journal of Cancer 11/2010; 103(12):1875-84. · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We evaluated massive parallel sequencing and long-range PCR (LRP) for rare variant detection and allele frequency estimation in pooled DNA samples. Exons 2 to 16 of the MUTYH gene were analyzed in breast cancer patients with Illumina's (Solexa) technology. From a pool of 287 genomic DNA samples we generated a single LRP product, while the same LRP was performed on 88 individual samples and the resulting products then pooled. Concentrations of constituent samples were measured with fluorimetry for genomic DNA and high-resolution melting curve analysis (HR-MCA) for LRP products. Illumina sequencing results were compared to Sanger sequencing data of individual samples. Correlation between allele frequencies detected by both methods was poor in the first pool, presumably because the genomic samples amplified unequally in the LRP, due to DNA quality variability. In contrast, allele frequencies correlated well in the second pool, in which all expected alleles at a frequency of 1% and higher were reliably detected, plus the majority of singletons (0.6% allele frequency). We describe custom bioinformatics and statistics to optimize detection of rare variants and to estimate required sequencing depth. Our results provide directions for designing high-throughput analyses of candidate genes.
    Human Mutation 09/2009; 30(12):1703-12. · 5.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Maintenance of genetic stability is crucial for all organisms in order to avoid the onset of deleterious diseases such as cancer. One of the many proveniences of DNA base damage in mammalian cells is oxidative stress, arising from a variety of endogenous and exogenous sources, generating highly mutagenic oxidative DNA lesions. One of the best characterized oxidative DNA lesion is 7,8-dihydro-8-oxoguanine (8-oxo-G), which can give rise to base substitution mutations (also known as point mutations). This mutagenicity is due to the miscoding potential of 8-oxo-G that instructs most DNA polymerases (pols) to preferentially insert an Adenine (A) opposite 8-oxo-G instead of the appropriate Cytosine (C). If left unrepaired, such A:8-oxo-G mispairs can give rise to CG->AT transversion mutations. A:8-oxo-G mispairs are proficiently recognized by the MutY glycosylase homologue (MUTYH). MUTYH can remove the mispaired A from an A:8-oxo-G, giving way to the canonical base excision repair (BER) that ultimately restores undamaged Guanine (G). The importance of this MUTYH-initiated pathway is illustrated by the fact that biallelic mutations in the MUTYH gene are associated with a hereditary colorectal cancer syndrome termed MUTYH-associated polyposis (MAP). In this review, we will focus on MUTYH, from its discovery to the most recent data regarding its cellular roles and interaction partners. We discuss the involvement of the MUTYH protein in the A:8-oxo-G BER pathway acting together with pol λ, the pol that can faithfully incorporate C opposite 8-oxo-G and thus bypass this lesion in a correct manner. We also outline the current knowledge about the regulation of MUTYH itself and the A:8-oxo-G repair pathway by posttranslational modifications (PTM). Finally, to achieve a clearer overview of the literature, we will briefly touch on the rather confusing MUTYH nomenclature. In short, MUTYH is a unique DNA glycosylase that catalyzes the excision of an undamaged base from DNA.
    Frontiers in Genetics 02/2013;