Cell fate specification during calvarial bone and suture development.

Departments of Craniofacial Development and Orthodontics, Floor 27 Guy's Tower, King's College, London, SE1 9RT, UK.
Developmental Biology (Impact Factor: 3.87). 12/2007; 311(2):335-46. DOI: 10.1016/j.ydbio.2007.08.028
Source: PubMed

ABSTRACT In this study we have addressed the fundamental question of what cellular mechanisms control the growth of the calvarial bones and conversely, what is the fate of the sutural mesenchymal cells when calvarial bones approximate to form a suture. There is evidence that the size of the osteoprogenitor cell population determines the rate of calvarial bone growth. In calvarial cultures we reduced osteoprogenitor cell proliferation; however, we did not observe a reduction in the growth of parietal bone to the same degree. This discrepancy prompted us to study whether suture mesenchymal cells participate in the growth of the parietal bones. We found that mesenchymal cells adjacent to the osteogenic fronts of the parietal bones could differentiate towards the osteoblastic lineage and could become incorporated into the growing bone. Conversely, mid-suture mesenchymal cells did not become incorporated into the bone and remained undifferentiated. Thus mesenchymal cells have different fate depending on their position within the suture. In this study we show that continued proliferation of osteoprogenitors in the osteogenic fronts is the main mechanism for calvarial bone growth, but importantly, we show that suture mesenchyme cells can contribute to calvarial bone growth. These findings help us understand the mechanisms of intramembranous ossification in general, which occurs not only during cranial and facial bone development but also in the surface periosteum of most bones during modeling and remodeling.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Quantifying multiple phenotypic aspects of individual craniofacial bones across early osteogenesis illustrates differences in typical bone growth and maturation and provides a basis for understanding the localized and overall influence of mutations associated with disease. We quantify the typical pattern of bone growth and maturation during early craniofacial osteogenesis and determine how this pattern is modified in Fgfr2(+/P253R) Apert syndrome mice. Results: Early differences in typical relative bone density increase are noted between intramembranous and endochondral bones, with endochondral bones normally maturing more quickly during the prenatal period. Several craniofacial bones, including the facial bones of Fgfr2(+/P253R) mice, display lower volumes during the earliest days of osteogenesis and lower relative densities until the perinatal period relative to unaffected littermates. Conclusions: Estimates of bone volume and linear measures describing morphology do not necessarily covary, highlighting the value of quantifying multiple facets of gross osteological phenotypes when exploring the influence of a disease causing mutation. Differences in mechanisms of osteogenesis likely underlie differences in intramembranous and endochondral relative density increase. The influence of the FGFR2 P253R mutation on bone volume changes across the prenatal period and again after birth, while its influence on relative bone density is more stable. Developmental Dynamics, 2014. © 2013 Wiley Periodicals, Inc.
    Developmental Dynamics 02/2014; · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Angiogenesis is likely critical for the process of intramembranous osteogenesis; however the developmental relationship between blood vessels and bone mineralization is not well studied within intramembranous bones. Given its importance, changes in angiogenesis regulation are likely to contribute to evolutionarily and medically relevant craniofacial variation. We summarize what is known about the association between angiogenesis and intramembranous osteogenesis, supplementing with information from the better studied processes of endochondral ossification and distraction osteogenesis. Based on this review, we introduce a model of angiogenesis during early intramembranous osteogenesis as well as a series of null hypotheses to be tested. This model can serve as a basis of future research on the spatio-temporal association and regulatory interactions of mesenchymal, vascular, and bone cells, which will be required to illuminate the potential effects of angiogenesis dysregulation on craniofacial skeletal phenotypes. Developmental Dynamics, 2013. © 2013 Wiley Periodicals, Inc.
    Developmental Dynamics 06/2013; · 2.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Malformations of the facial midline are a consistent feature among individuals with defects in primary cilia. Here, we provide a framework in which to consider how these primary cilia-dependent facial anomalies occur. We generated mice in which the intraflagellar transport protein Kif3a was deleted in cranial neural crest cells. The Kif3a phenotypes included isolated metopic craniosynostosis, delayed closure of the anterior fontanelles, and hydrocephalus, as well as midline facial anomalies including hypertelorism, cleft palate, and bifid nasal septum. Although all cranial neural crest cells had truncated primary cilia as a result of the conditional deletion, only those in the midline showed evidence of hyper-proliferation and ectopic Wnt responsiveness. Thus, cranial neural crest cells do not rely on primary cilia for their migration but once established in the facial prominences, midline cranial neural crest cells require Kif3a function in order to integrate and respond to Wnt signals from the surrounding epithelia.
    Reproductive toxicology (Elmsford, N.Y.). 05/2014;


Available from