EST sequencing of Onychophora and phylogenomic analysis of Metazoa.

Institute of Zoology and Zoological Museum, University of Hamburg, D-20146 Hamburg, Germany.
Molecular Phylogenetics and Evolution (Impact Factor: 4.02). 01/2008; 45(3):942-51. DOI: 10.1016/j.ympev.2007.09.002
Source: PubMed

ABSTRACT Onychophora (velvet worms) represent a small animal taxon considered to be related to Euarthropoda. We have obtained 1873 5' cDNA sequences (expressed sequence tags, ESTs) from the velvet worm Epiperipatus sp., which were assembled into 833 contigs. BLAST similarity searches revealed that 51.9% of the contigs had matches in the protein databases with expectation values lower than 10(-4). Most ESTs had the best hit with proteins from either Chordata or Arthropoda (approximately 40% respectively). The ESTs included sequences of 27 ribosomal proteins. The orthologous sequences from 28 other species of a broad range of phyla were obtained from the databases, including other EST projects. A concatenated amino acid alignment comprising 5021 positions was constructed, which covers 4259 positions when problematic regions were removed. Bayesian and maximum likelihood methods place Epiperipatus within the monophyletic Ecdysozoa (Onychophora, Arthropoda, Tardigrada and Nematoda), but its exact relation to the Euarthropoda remained unresolved. The "Articulata" concept was not supported. Tardigrada and Nematoda formed a well-supported monophylum, suggesting that Tardigrada are actually Cycloneuralia. In agreement with previous studies, we have demonstrated that random sequencing of cDNAs results in sequence information suitable for phylogenomic approaches to resolve metazoan relationships.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: The monophyly of Ecdysozoa, which comprise molting phyla, has received strong support from several lines of evidence. However, the internal relationships of Ecdysozoa are still contended. We generated expressed sequence tags from a priapulid (penis worm), a kinorhynch (mud dragon), a tardigrade (water bear) and five chelicerate taxa by 454 transcriptome sequencing. A multigene alignment was assembled from 63 taxa, which comprised after matrix optimization 24,249 amino acid positions with high data density (2.6% gaps, 19.1% missing data). Phylogenetic analyses employing various models support the monophyly of Ecdysozoa. A clade combining Priapulida and Kinorhyncha (i.e. Scalidophora) was recovered as the earliest branch among Ecdysozoa. We conclude that Cycloneuralia, a taxon erected to combine Priapulida, Kinorhyncha and Nematoda (and others), are paraphyletic. Rather Arthropoda (including Onychophora) are allied with Nematoda and Tardigrada. Within Arthropoda, we found strong support for most clades, including monophyletic Mandibulata and Pancrustacea. The phylogeny within the Euchelicerata remained largely unresolved. There is conflicting evidence on the position of tardigrades: While Bayesian and maximum likelihood analyses of only slowly evolving genes recovered Tardigrada as a sister group to Arthropoda, analyses of the full data set, and of subsets containing genes evolving at fast and intermediate rates identified a clade of Tardigrada and Nematoda. Notably, the latter topology is also supported by the analyses of indel patterns.
    Molecular Phylogenetics and Evolution 08/2014; · 4.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Myriapods had been considered closely allied to hexapods (insects and relatives). However, analyses of molecular sequence data have consistently placed Myriapoda either as a sister group of Pancrustacea, comprising crustaceans and hexapods, and thereby supporting the monophyly of Mandibulata, or retrieved Myriapoda as a sister group of Chelicerata (spiders, ticks, mites and allies). In addition, the relationships among the four myriapod groups (Pauropoda, Symphyla, Diplopoda, Chilopoda) are unclear. To resolve the phylogeny of myriapods and their relationship to other main arthropod groups, we collected transcriptome data from the symphylan Symphylella vulgaris, the centipedes Lithobius forficatus and Scolopendra dehaani, and the millipedes Polyxenus lagurus, Glomeris pustulata and Polydesmus angustus by 454 sequencing. We concatenated a multiple sequence alignment that contained 1,550 orthologous single copy genes (1,109,847 amino acid positions) from 55 euarthropod and 14 outgroup taxa. The final selected alignment included 181 genes and 37,425 amino acid positions from 55 taxa, with eight myriapods and 33 other euarthropods. Bayesian analyses robustly recovered monophyletic Mandibulata, Pancrustacea and Myriapoda. Most analyses support a sister group relationship of Symphyla in respect to a clade comprising Chilopoda and Diplopoda. Inclusion of additional sequence data from nine myriapod species resulted in an alignment with poor data density, but broader taxon average. With this dataset we inferred Diplopoda + Pauropoda as closest relatives (i.e., Dignatha) and recovered monophyletic Helminthomorpha. Molecular clock calculations suggest an early Cambrian emergence of Myriapoda ∼513 million years ago and a late Cambrian divergence of myriapod classes. This implies a marine origin of the myriapods and independent terrestrialization events during myriapod evolution.
    Molecular Phylogenetics and Evolution 04/2014; · 4.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A review of more than hundred papers on the bilaterian phylogeny presenting the results of studies conducted in the last twenty years is analyzed. The review discusses the most significant results that were obtained using different materials (genes, proteins, and so on) and processed by different statistic models. A comparison of these results is possible with due regard for a special methodological approach; it is not considered in this paper. The review presents hypotheses developed in different time periods; it allows realizing how concepts of phylogeny of some animal groups change with time. This paper includes the data on the phylogeny of all bilaterian phyla belonging to three main stems (Lophotrochozoa, Ecdysozoa, and Deuterostomia). In addition, the data on the groups, the position of which on the bilaterian phylogenetic tree is still uncertain, are also presented. The review contains a list of references, which includes not only the works with summary results on phylogeny of Bilateria or some large groups, but also on phylogeny of taxa of the species rank.
    Zoologicheskiĭ zhurnal 03/2014; 93(3):318-341. · 0.19 Impact Factor