EST sequencing of Onychophora and phylogenomic analysis of Metazoa.

Institute of Zoology and Zoological Museum, University of Hamburg, D-20146 Hamburg, Germany.
Molecular Phylogenetics and Evolution (Impact Factor: 4.07). 01/2008; 45(3):942-51. DOI: 10.1016/j.ympev.2007.09.002
Source: PubMed

ABSTRACT Onychophora (velvet worms) represent a small animal taxon considered to be related to Euarthropoda. We have obtained 1873 5' cDNA sequences (expressed sequence tags, ESTs) from the velvet worm Epiperipatus sp., which were assembled into 833 contigs. BLAST similarity searches revealed that 51.9% of the contigs had matches in the protein databases with expectation values lower than 10(-4). Most ESTs had the best hit with proteins from either Chordata or Arthropoda (approximately 40% respectively). The ESTs included sequences of 27 ribosomal proteins. The orthologous sequences from 28 other species of a broad range of phyla were obtained from the databases, including other EST projects. A concatenated amino acid alignment comprising 5021 positions was constructed, which covers 4259 positions when problematic regions were removed. Bayesian and maximum likelihood methods place Epiperipatus within the monophyletic Ecdysozoa (Onychophora, Arthropoda, Tardigrada and Nematoda), but its exact relation to the Euarthropoda remained unresolved. The "Articulata" concept was not supported. Tardigrada and Nematoda formed a well-supported monophylum, suggesting that Tardigrada are actually Cycloneuralia. In agreement with previous studies, we have demonstrated that random sequencing of cDNAs results in sequence information suitable for phylogenomic approaches to resolve metazoan relationships.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent molecular studies have indicated a close relationship between Crustacea and Hexapoda and postulated their unification into the Pancrustacea/Tetraconata clade. Certain molecular analyses have also suggested that the crustacean lineage, which includes the Branchiopoda, might be the sister group of Hexapoda. We test this hypothesis by analyzing the structure of the ovary and the ultrastructural features of oogenesis in two branchiopod species, Cyzicus tetracerus and Lynceus brachyurus, representing two separate orders, Spinicaudata and Laevicaudata, respectively. The female gonads of these species have not been investigated before. Here, we demonstrate that in both studied species the ovarian follicles develop inside characteristic ovarian protrusions and comprise a germline cyst surrounded by a simple somatic (follicular) epithelium, supported by a thin basal lamina. Each germline cyst consists of one oocyte and three supporting nurse cells, and the oocyte differentiates relatively late during ovarian follicle development. The synthesis of oocyte reserve materials involves rough endoplasmic reticulum and Golgi complexes. The follicular cells are penetrated by a complex canal system and there is no external epithelial sheath covering the ovarian follicles. The structure of the ovary and the ultrastructural characteristics of oogenesis are not only remarkably similar in both Cyzicus and Lynceus, but also share morphological similarities with Notostraca as well as the basal hexapods Campodeina and Collembola. Possible phylogenetic implications of these findings are discussed.
    Zoology 01/2014; · 1.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Myriapods had been considered closely allied to hexapods (insects and relatives). However, analyses of molecular sequence data have consistently placed Myriapoda either as a sister group of Pancrustacea, comprising crustaceans and hexapods, and thereby supporting the monophyly of Mandibulata, or retrieved Myriapoda as a sister group of Chelicerata (spiders, ticks, mites and allies). In addition, the relationships among the four myriapod groups (Pauropoda, Symphyla, Diplopoda, Chilopoda) are unclear. To resolve the phylogeny of myriapods and their relationship to other main arthropod groups, we collected transcriptome data from the symphylan Symphylella vulgaris, the centipedes Lithobius forficatus and Scolopendra dehaani, and the millipedes Polyxenus lagurus, Glomeris pustulata and Polydesmus angustus by 454 sequencing. We concatenated a multiple sequence alignment that contained 1,550 orthologous single copy genes (1,109,847 amino acid positions) from 55 euarthropod and 14 outgroup taxa. The final selected alignment included 181 genes and 37,425 amino acid positions from 55 taxa, with eight myriapods and 33 other euarthropods. Bayesian analyses robustly recovered monophyletic Mandibulata, Pancrustacea and Myriapoda. Most analyses support a sister group relationship of Symphyla in respect to a clade comprising Chilopoda and Diplopoda. Inclusion of additional sequence data from nine myriapod species resulted in an alignment with poor data density, but broader taxon average. With this dataset we inferred Diplopoda + Pauropoda as closest relatives (i.e., Dignatha) and recovered monophyletic Helminthomorpha. Molecular clock calculations suggest an early Cambrian emergence of Myriapoda ∼513 million years ago and a late Cambrian divergence of myriapod classes. This implies a marine origin of the myriapods and independent terrestrialization events during myriapod evolution.
    Molecular Phylogenetics and Evolution 04/2014; · 4.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Remipedia is a small, recently described crustacean class that inhabits submerged marine/anchialine cave systems. Phylogenetic and morphological investigations support a sister group relationship between these animals and the hexapods. The recent deposition of numerous (>100,000) transcriptome shotgun assembly sequences for Speleonectes cf. tulumensis provides a unique resource to identify proteins of interest from a member of the Remipedia. Here, this dataset was mined for sequences encoding putative neuropeptide pre/preprohormones, with the mature peptides predicted from the deduced precursors using an established workflow. The structures of 40 mature peptides were obtained via this strategy, including members of 11 well-known arthropod peptide families (adipokinetic hormone/corazonin-like peptide [ACP], allatostatin A, allatostatin C, diuretic hormone 31, eclosion hormone, ion transport peptide/crustacean hyperglycemic hormone, neuropeptide F, proctolin, SIFamide, sulfakinin and tachykinin-related peptide); these are the only peptides thus far described from any member of the Remipedia. Comparison of the Speleonectes isoforms with those from other crustaceans and hexapods revealed the peptidome of this species to have characteristics of both subphyla (e.g. it possesses the stereotypical decapod crustacean SIFamide and tachykinin-related peptide isoforms, while simultaneously being the only crustacean with an insect AKC). Moreover, BLAST searches in which the deduced Speleonectes precursors were compared to the pancrustacean protein database most frequently returned insect homologs as the closest matches. The peptidomic analyses presented here are consistent with the hypothesized phylogenetic position of the Remipedia within the Pancrustacea, and serve as a foundation from which to launch future investigations of peptidergic signaling in remipedes.
    General and Comparative Endocrinology 01/2014; · 2.82 Impact Factor