Article

BRD-NUT oncoproteins: a family of closely related nuclear proteins that block epithelial differentiation and maintain the growth of carcinoma cells.

Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
Oncogene (Impact Factor: 8.56). 05/2008; 27(15):2237-42. DOI: 10.1038/sj.onc.1210852
Source: PubMed

ABSTRACT An unusual group of carcinomas, here termed nuclear protein in testis (NUT) midline carcinomas (NMC), are characterized by translocations that involve NUT, a novel gene on chromosome 15. In about 2/3rds of cases, NUT is fused to BRD4 on chromosome 19. Using a candidate gene approach, we identified two NMCs harboring novel rearrangements that result in the fusion of NUT to BRD3 on chromosome 9. The BRD3-NUT fusion gene encodes a protein composed of two tandem chromatin-binding bromodomains, an extra-terminal domain, a bipartite nuclear localization sequence, and almost the entirety of NUT that is highly homologous to BRD4-NUT. The function of NUT is unknown, but here we show that NUT contains nuclear localization and export sequences that promote nuclear-cytoplasmic shuttling via a leptomycin-sensitive pathway. In contrast, BRD3-NUT and BRD4-NUT are strictly nuclear, implying that the BRD moiety retains NUT in the nucleus via interactions with chromatin. Consistent with this idea, FRAP studies show that BRD4, BRD4-NUT and BRD3-NUT have significantly slower rates of lateral nuclear diffusion than that of NUT. To investigate the functional role of BRD-NUT fusion proteins in NMCs, we investigated the effects of siRNA-induced BRD3-NUT and BRD4-NUT withdrawal. Silencing of these proteins in NMC cell lines resulted in squamous differentiation and cell cycle arrest. Together, these data suggest that BRD-NUT fusion proteins contribute to carcinogenesis by associating with chromatin and interfering with epithelial differentiation.

Full-text

Available from: Jeffery L Kutok, Feb 12, 2014
0 Bookmarks
 · 
123 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nuclear protein in testis (NUT) midline carcinoma (NMC) is a very aggressive tumor with limited survival, recently recognized as a subset of poorly differentiated squamous cell carcinoma. A simple chromosomal translocation results in NUT overexpression and malignant transformation. This study used immunohistochemistry to retrospectively diagnose and characterize NMC cases. Immunoperoxidase staining was performed according to a standard protocol and interpreted independently by two pathologists. Scores were based on nuclear staining with monoclonal NUT antibody (C52B1) in the tumor cells. Fifty-one poorly differentiated carcinoma cases with material available for testing were retrieved. Average patient age was 54.9 years (range: 16-82), with 20 women and 31 men. A single NMC case (2%) was retrospectively diagnosed in a 26-year-old man with a left maxillary sinus/nasal cavity tumor; he died of his disease 18 months after presentation, despite treatment. These results support inclusion of NUT antibody in diagnostic immunohistochemical panels for poorly differentiated carcinomas of the upper aerodigestive tract. Copyright © 2014 Elsevier Inc. All rights reserved.
    Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 11/2014; 119(2). DOI:10.1016/j.oooo.2014.09.031 · 1.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Maintenance of cell fates is essential for the development and homeostasis of multicellular organisms and involves the preservation of the expression status of selector genes that control many target genes. Epigenetic marks have pivotal roles in the maintenance of gene expression status, as occurs with methylation on lysine 27 of histone H3 (H3K27me) for Hox gene regulation. In contrast, because the levels of histone acetylation decrease during the mitotic phase, acetylated histone has not been believed to contribute to the maintenance of cell fates. Because members of the bromodomain and extra terminal (BET) family bind to acetylated histones localized on mitotic chromosomes, it is possible that they may regulate the transcriptional status of genes throughout the cell cycle. In this commentary, we discuss the recent analyses of C. elegans BET family protein BET-1, which contributes to the maintenance of cell fates through the histone H2A variant HTZ-1/H2A.z. This mechanism represses transcription of selector genes in the genomic region where lysine 27 of histone H3 (H3K27) is demethylated by histone demethylase UTX-1. We discuss the possibility that BET-1 and HTZ-1 maintain the poised state of RNA polymerase II in the cell such that it is ready to respond to differentiation signals.
    05/2014; 3:e29048. DOI:10.4161/worm.29048
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to investigate NUT (nuclear protein in the testis) expression in ovarian germ cell tumours (GCTs). Immunostaining for NUT protein was performed in 10 mature cystic teratomas and in 49 malignant ovarian GCTs including 15 pure dysgerminomas, six dysgerminomas associated with gonadoblastoma, nine yolk sac tumours, 12 immature teratomas, and seven mixed malignant tumours. Only nuclear staining was considered a positive finding although cytoplasmic staining was noted when present. Thirty-seven (76%) malignant GCTs were NUT positive but staining was usually of weak to moderate intensity and observed in a relatively small proportion of neoplastic cells. Staining in immature teratomas and yolk sac tumours was restricted to foci of hepatoid and intestinal/glandular differentiation, where both nuclear and cytoplasmic reactivity were observed. In dysgerminoma associated with gonadoblastoma only the in situ and invasive germ cell elements were NUT positive. Nuclear staining was not seen in benign teratomas. Most malignant ovarian GCTs express NUT protein, albeit focally, and this should be considered when evaluating immunostaining in the differential diagnosis of poorly differentiated malignancies, particularly NUT midline carcinoma. Since NUT protein appears to play a role in normal germ cell maturation it may influence intestinal or hepatoid differentiation within malignant GCTs.
    Pathology 02/2015; 47(2):118-22. DOI:10.1097/PAT.0000000000000208 · 2.62 Impact Factor