Prostate growth and inflammation.

Department of Urology U Bracci, University La Sapienza, Via Nomentana 233, Rome, Italy.
The Journal of Steroid Biochemistry and Molecular Biology (Impact Factor: 3.98). 03/2008; 108(3-5):254-60. DOI: 10.1016/j.jsbmb.2007.09.013
Source: PubMed

ABSTRACT There is emerging evidence that prostatic inflammation may contribute to prostate growth either in terms of hyperplastic (BPH) or neoplastic (PC) changes. Inflammation is thought to incite carcinogenesis by causing cell and genome damage, promoting cellular turnover.
We reviewed our personal experience and the international recent literature on the clinical data supporting a role of inflammation on BPH and PC growth and progression.
BPH: Among those patients with self-reported prostatitis, 57% had a history of BPH. MTOPS study showed that men with inflammation had a significantly higher risk of BPH progression and acute urinary retention. We showed that the use of a COX-2 inhibitor in combination with a 5 alpha reductase inhibitor could increase the apoptotic index in BPH tissue. Prostate cancer: A PCR-based analysis of bacterial colonization in PC specimens and normal prostate tissue showed highly suggestive correlation of bacterial colonization and chronic inflammation with a diagnosis of PC. Evidence from genetic studies support the hypothesis that prostate inflammation may be a cause of prostate cancer. De Marzo proposed that proliferative inflammatory atrophy (PIA) is a precursor to PIN and cancer.
The concept that inflammation can promote prostate growth either in terms of BPH and PC risk remains highly suggestive.

  • [Show abstract] [Hide abstract]
    ABSTRACT: In the hormone-dependent prostate inflammation model induced by implantation of slowreleasing pellets (50 mg testosterone and 5 mg estradiol) to Noble male rats, intragastric administration of Afala at a dose of 7.5 ml/kg for 18 weeks reduced the number of inflamed prostatic acini. The effect of afala was comparable with that of antiestrogen ICI 182,780 (3 mg/kg subcutaneously twice a week for 18 weeks). Prolonged treatment with hormones in high doses induced severe inflammation of the prostate tissue, which was not terminated by the test preparations. As differentiated from the antiestrogen ICI 182,780, afala did not induce body weight gain and decrease in pituitary weight in experimental animals in comparison with the control group.
    Bulletin of Experimental Biology and Medicine 04/2014; 156(6):807-9. · 0.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Red onion scales (ROS) contain large amounts of flavonoids that are responsible for the reported antioxidant activity, immune enhancement, and anticancer property. Atypical prostatic hyperplasia (APH) was induced in adult castrated Wistar rats by both s.c. injection of testosterone (0.5 mg/rat/day) and by smearing citral on shaved skin once every 3 days for 30 days. Saw palmetto (100 mg/kg) as a positive control and ROS suspension at doses of 75, 150, and 300 mg/kg/day were given orally every day for 30 days. All medications were started 7 days after castration and along with testosterone and citral. The HPLC profile of ROS methanolic extract displayed two major peaks identified as quercetin and quercetin-4'- β -O-D-glucoside. Histopathological examination of APH-induced prostatic rats revealed evidence of hyperplasia and inflammation with cellular proliferation and reduced apoptosis Immunohistochemistry showed increased tissue expressions of IL-6, IL-8, TNF- α , IGF-1, and clusterin, while TGF- β 1 was decreased, which correlates with the presence of inflammation. Both saw palmetto and RO scale treatment have ameliorated these changes. These ameliorative effects were more evident in RO scale groups and were dose dependent. In conclusion, methanolic extract of ROS showed a protective effect against APH induced rats that may be attributed to potential anti-inflammatory and immunomodulatory effects.
    Mediators of Inflammation 01/2014; 2014:640746. · 3.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DLBS4847 is a standardized bioactive fraction of Curcuma mangga. In this study, we used prostate cancer (PC)-3 as the cell line to study the effects of DLBS4847 on prostatic cell viability, as well as related molecular changes associated with the decreased cell number. The observation revealed that DLBS4847 inhibited the growth of PC3 cells through downregulation of the 5α-reductase (5AR) pathway. At the transcription level, 5AR1 and androgen-receptor gene expressions were downregulated in a dose-dependent manner. Furthermore, 5AR-1 and dihydrotestosterone expression were also downregulated at the protein level. A microarray study was also performed to see the effects of DLBS4847 on differential gene expressions in prostate cancer 3 cells. Among others, DLBS4847 downregulated genes related to prostate growth and hypertrophy. Our results suggested that DLBS4847 could potentially become an alternative treatment for prostate disorders, such as benign prostatic hyperplasia. In this regard, DLBS4847 exerts its growth inhibition partially through downregulation of the 5AR pathway.
    Cancer Management and Research 01/2014; 6:267-78.