Reduced creatine-stimulated respiration in doxorubicin challenged mitochondria: particular sensitivity of the heart.

Institute of Cell Biology, ETH Zurich, CH-8093, Zurich, Switzerland.
Biochimica et Biophysica Acta (Impact Factor: 4.66). 12/2007; 1767(11):1276-84. DOI: 10.1016/j.bbabio.2007.08.006
Source: PubMed

ABSTRACT Doxorubicin (DXR) belongs to the most efficient anticancer drugs. However, its use is limited by a risk of cardiotoxicity, which is not completely understood. Recently, we have shown that DXR impairs essential properties of purified mitochondrial creatine kinase (MtCK), with cardiac isoenzyme (sMtCK) being particularly sensitive. In this study we assessed the effects of DXR on respiration of isolated structurally and functionally intact heart mitochondria, containing sMtCK, in the presence and absence of externally added creatine (Cr), and compared these effects with the response of brain mitochondria expressing uMtCK, the ubiquitous, non-muscle MtCK isoenzyme. DXR impaired respiration of isolated heart mitochondria already after short-term exposure (minutes), affecting both ADP- and Cr-stimulated respiration. During a first short time span (minutes to 1 h), detachment of MtCK from membranes occurred, while a decrease of MtCK activity related to oxidative damage was only observed after longer exposure (several hours). The early inhibition of Cr-stimulated respiration, in addition to impairment of components of the respiratory chain involves a partial disturbance of functional coupling between MtCK and ANT, likely due to interaction of DXR with cardiolipin leading to competitive inhibition of MtCK/membrane binding. The relevance of these findings for the regulation of mitochondrial energy production in the heart, as well as the obvious differences of DXR action in the heart as compared to brain tissue, is discussed.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cardiotoxicity is an important side effect of cytotoxic drugs and may be a risk factor of long-term morbidity for both patients during therapy and also for staff exposed during the phases of manipulation of antiblastic drugs. The mechanism of cardiotoxicity studied in vitro and in vivo essentially concerns the formation of free radicals leading to oxidative stress, with apoptosis of cardiac cells or immunologic reactions, but other mechanisms may play a role in antiblastic-induced cardiotoxicity. Actually, some new cytotoxic drugs like trastuzumab and cyclopentenyl cytosine show cardiotoxic effects. In this report we discuss the different mechanisms of cardiotoxicity induced by antiblastic drugs assessed using animal models.
    BioMed research international. 01/2014; 2014:240642.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Historically, cellular trafficking of lipids has received much less attention than protein trafficking, mostly because its biological importance was underestimated, involved sorting and translocation mechanisms were not known, and analytical tools were limiting. This has changed during the last decade, and we discuss here some progress made in respect to mitochondria and the trafficking of phospholipids, in particular cardiolipin. Different membrane contact site or junction complexes and putative lipid transfer proteins for intra- and intermembrane lipid translocation have been described, involving mitochondrial inner and outer membrane, and the adjacent membranes of the endoplasmic reticulum. An image emerges how cardiolipin precursors, remodeling intermediates, mature cardiolipin and its oxidation products could migrate between membranes, and how this trafficking is involved in cardiolipin biosynthesis and cell signaling events. Particular emphasis in this review is given to mitochondrial nucleoside diphosphate kinase D and mitochondrial creatine kinases, which emerge to have roles in both, membrane junction formation and lipid transfer.
    Chemistry and Physics of Lipids 12/2013; · 2.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Anthracyclines, discovered 50years ago, are antibiotics widely used as antineoplastic agents and are among the most successful anticancer therapies ever developed to treat a wide range of cancers, including hematological malignancies, soft tissue sarcomas and solid tumors. However, some anthracyclines, including doxorubicin, exhibit major signs of cardiotoxicity that may ultimately lead to heart failure (HF). Despite intensive research on doxorubicine-induced cardiotoxicity, the underlying mechanisms responsible for doxorubicin-induced cardiotoxicity have not been fully elucidated yet. Published literature so far has focused mostly on mitochondria dysfunction with consequent oxidative stress, Ca(2+) overload, and cardiomyocyte death as doxorubicin side effects, leading to heart dysfunction. This review focuses on the current understanding of the molecular mechanisms underlying doxorubicin-induced cardiomyocyte death (i.e.: cardiomyocyte death, mitochondria metabolism and bioenergetic alteration), but we will also point to new directions of possible mechanisms, suggesting potent prior or concomitant alterations of specific signaling pathways with molecular actors directly targeted by the anticancer drugs itself (i.e. calcium homeostasis or cAMP signaling cascade). The mechanisms of anticancer cardiac toxicity may be more complex than just mitochondria dysfunction. Partnership of both basic and clinical research is needed to promote new strategies in diagnosis, therapies with concomitant cardioprotection in order to achieve cancer treatment with acceptable cardiotoxicity along life span.
    La Presse Médicale 08/2013; · 1.17 Impact Factor


Available from
May 22, 2014