Article

Novel VCP mutations in inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia.

Division of Genetics, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA.
Clinical Genetics (Impact Factor: 3.65). 12/2007; 72(5):420-6. DOI: 10.1111/j.1399-0004.2007.00887.x
Source: PubMed

ABSTRACT Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia (IBMPFD, OMIM 167320) has recently been attributed to eight missense mutations in valosin-containing protein (VCP). We report novel VCP mutations N387H and L198W in six individuals from two families who presented with proximal muscle weakness at a mean age of diagnosis of 40 years, most losing the ability to walk within a few years of onset. Electromyographic studies in four individuals were suggestive of 'myopathic' changes, and neuropathic pattern was identified in one individual in family 1. Muscle biopsy in four individuals showed myopathic changes characterized by variable fiber size, two individuals showing rimmed vacuoles and IBM-type cytoplasmic inclusions in muscle fibers, and electron microscopy in one individual revealing abundant intranuclear inclusions. Frontotemporal dementia associated with characteristic behavioral changes including short-term memory loss, language difficulty, and antisocial behavior was observed in three individuals at a mean age of 47 years. Detailed brain pathology in one individual showed cortical degenerative changes, most severe in the temporal lobe and hippocampus. Abundant ubiquitin-positive tau-, alpha-synuclein-, polyglutamine repeat-negative neuronal intranuclear inclusions and only rare intracytoplasmic VCP positive inclusions were seen. These new mutations may cause structural changes in VCP and provide some insight into the functional effects of pathogenic mutations.

1 Follower
 · 
122 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Frontotemporal dementia (FTD) is a neurodegenerative disorder characterized by degeneration of the fronto temporal lobes and abnormal protein inclusions. It exhibits a broad clinicopathological spectrum and has been linked to mutations in seven different genes. We will provide a picture, which connects the products of these genes, albeit diverse in nature and function, in a network. Despite the paucity of information available for some of these genes, we believe that RNA processing and post-transcriptional regulation of gene expression might constitute a common theme in the network. Recent studies have unraveled the role of mutations affecting the functions of RNA binding proteins and regulation of microRNAs. This review will combine all the recent findings on genes involved in the pathogenesis of FTD, highlighting the importance of a common network of interactions in order to study and decipher the heterogeneous clinical manifestations associated with FTD. This approach could be helpful for the research of potential therapeutic strategies.
    Frontiers in Molecular Neuroscience 03/2015; 8:9. DOI:10.3389/fnmol.2015.00009
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Frontotemporal lobar degeneration is the second most common form of cortical dementia in the presenium after Alzheimer’s disease. Clinically, based on consensus guidelines, three distinct disease entities can be distinguished: frontotemporal dementia, semantic dementia and progressive nonfluent aphasia. Dementia of frontal type and motor neuron disease inclusion dementia are the most frequent neuropathological subtypes of frontotemporal lobar degeneration. By using immunohistochemistry, the latter is characterized by the presence of filamentous ubiquitin-reactive but tau-negative inclusions in nerve cell bodies and neurites. In contrast, Pick‘s disease and familial frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) are both characterized by abundant filamentous nerve cell inclusions made up of the microtubule-associated protein tau. The recent discovery of more than 15 different mutations in the tau gene in FTDP-17 brought the tau protein to the centre stage. These findings had a major impact on our understanding of neurodegenerative disorders characterized by tau filamentous inclusions in neurones and/or glial cells which are grouped under the generic term of tauopathies. However, as exciting these new molecular insights are, it would be inappropriate to lump frontotemporal lobar degeneration as tauopathies. Recent neuropathological and genetic data strongly suggest that there is more than one genetic background for frontotemporal lobar degeneration.
    Advanced Understanding of Neurodegenerative Diseases, 12/2011; , ISBN: 978-953-307-529-7
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Valosin-containing protein (VCP) has been shown to colocalize with abnormal protein aggregates, such as nuclear inclusions of Huntington disease and Machado-Joseph disease, Lewy bodies in Parkinson disease. Several mis-sense mutations in the human VCP gene have been identified in patients suffering inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia (IBMPFD). Recently, we have shown that VCP possesses both aggregate-forming and aggregate-clearing activities. Here, we showed that in cells treated with proteasome inhibitors VCP first appeared as several small aggregates throughout the cells; and then, these small aggregates gathered together into a single big aggregate. Subcellular localization and ATPase activity of VCP clearly influenced the localization of the aggregates. Furthermore, all tested IBMPFD-causing mutant VCPs, possessed elevated ATPase activities and enhanced aggregate-forming activities in cultured cells. In Drosophila, these mutants and VCP(T761E), a super active VCP, did not appear to spontaneously induce eye degeneration, but worsened the phenotype when co-expressed with polyglutamines. Unexpectedly, these VCPs did not apparently change sizes and the amounts of polyglutamine aggregates in Drosophila eyes. Elevated ATPase activities, thus, may be a hidden primary defect causing IBMPFD pathological phenotypes, which would be revealed when abnormal proteins are accumulated, as typically observed in aging.
    Genes to Cells 08/2010; 15(8):911-22. DOI:10.1111/j.1365-2443.2010.01428.x · 2.86 Impact Factor