Diffusion-tensor MR imaging and tractography: exploring brain microstructure and connectivity.

Department of Radiology, Sections of Neuroradiology and Biomedical Image Analysis, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA.
Radiology (Impact Factor: 6.21). 12/2007; 245(2):367-84. DOI: 10.1148/radiol.2452060445
Source: PubMed

ABSTRACT Diffusion magnetic resonance (MR) imaging is evolving into a potent tool in the examination of the central nervous system. Although it is often used for the detection of acute ischemia, evaluation of directionality in a diffusion measurement can be useful in white matter, which demonstrates strong diffusion anisotropy. Techniques such as diffusion-tensor imaging offer a glimpse into brain microstructure at a scale that is not easily accessible with other modalities, in some cases improving the detection and characterization of white matter abnormalities. Diffusion MR tractography offers an overall view of brain anatomy, including the degree of connectivity between different regions of the brain. However, optimal utilization of the wide range of data provided with directional diffusion MR measurements requires careful attention to acquisition and postprocessing. This article will review the principles of diffusion contrast and anisotropy, as well as clinical applications in psychiatric, developmental, neurodegenerative, neoplastic, demyelinating, and other types of disease.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Pain in chronic pancreatitis (CP) shows similarities with other visceral pain syndromes (i.e., inflammatory bowel disease and esophagitis), which should thus be managed in a similar fashion. Typical causes of CP pain include increased intrapancreatic pressure, pancreatic inflammation and pancreatic/extrapancreatic complications. Unfortunately, CP pain continues to be a major clinical challenge. It is recognized that ongoing pain may induce altered central pain processing, e.g., central sensitization or pro-nociceptive pain modulation. When this is present conventional pain treatment targeting the nociceptive focus, e.g., opioid analgesia or surgical/endoscopic intervention, often fails even if technically successful. If central nervous system pain processing is altered, specific treatment targeting these changes should be instituted (e.g., gabapentinoids, ketamine or tricyclic antidepressants). Suitable tools are now available to make altered central processing visible, including quantitative sensory testing, electroencephalograpy and (functional) magnetic resonance imaging. These techniques are potentially clinically useful diagnostic tools to analyze central pain processing and thus define optimum management approaches for pain in CP and other visceral pain syndromes. The present review proposes a systematic mechanism-orientated approach to pain management in CP based on a holistic view of the mechanisms involved. Future research should address the circumstances under which central nervous system pain processing changes in CP, and how this is influenced by ongoing nociceptive input and therapies. Thus we hope to predict which patients are at risk for developing chronic pain or not responding to therapy, leading to improved treatment of chronic pain in CP and other visceral pain disorders.
    World Journal of Gastroenterology 01/2015; 21(1):47-59. · 2.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of conventional Magnetic Resonance Imaging (MRI) in the detection of cerebral tumors has been well established. However its excellent soft tissue visualization and variety of imaging sequences are in many cases non-specific for the assessment of brain tumor grading. Hence, advanced MRI techniques, like Diffusion-Weighted Imaging (DWI), Diffusion Tensor Imaging (DTI) and Dynamic-Susceptibility Contrast Imaging (DSCI), which are based on different contrast principles, have been used in the clinical routine to improve diagnostic accuracy. The variety of quantitative information derived from these techniques provides significant structural and functional information in a cellular level, highlighting aspects of the underlying brain pathophysiology. The present work, reviews physical principles and recent results obtained using DWI/DTI and DSCI, in tumor characterization and grading of the most common cerebral neoplasms, and discusses how the available MR quantitative data can be utilized through advanced methods of analysis, in order to optimize clinical decision making.
    Cancer Imaging. 04/2014; 14(20).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although surgery is not curative for the majority of intracranial gliomas, radical resection has been demonstrated to influence survival and delay tumor progression. Because gliomas are very frequently located in eloquent or more generally critical areas, surgeons must always balance the maximizing resection with the need to preserve neurological function. In this overview, we tried to summarize the recent literature and our personal experience about (1) the benefits and limits of using preoperative anatomical and functional neuroimaging (anatomical MRI, DTI fiber tracking, and functional MRI), (2) the issues to consider in planning the surgical strategy, (3) the need to thoroughly understand microsurgical techniques that enable a maximal resection (subpial dissection, vascular manipulation, etc.), (4) the importance of individualizing surgical strategy especially in patients with gliomas in eloquent areas (the role of neuropsychological evaluation in redefining eloquent and non-eloquent areas), and (5) how to use intraoperative mapping techniques and understand why and when to use them. Through this paper, the reader should become more familiar with a comprehensive panel of techniques and methodologies but more importantly become aware that these recent technical advances facilitate a conceptual change from classical surgical paradigms toward a more patient-specific approach.
    Neurosurgical Review 10/2014; · 1.86 Impact Factor