Article

Evolution of adverse changes in stored RBCs.

Department of Anesthesiology, Duke Clinical Research Institute, Duke University Medical Center, Durham, NC 27710, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 11/2007; 104(43):17063-8. DOI: 10.1073/pnas.0708160104
Source: PubMed

ABSTRACT Recent studies have underscored questions about the balance of risk and benefit of RBC transfusion. A better understanding of the nature and timing of molecular and functional changes in stored RBCs may provide strategies to improve the balance of benefit and risk of RBC transfusion. We analyzed changes occurring during RBC storage focusing on RBC deformability, RBC-dependent vasoregulatory function, and S-nitrosohemoglobin (SNO-Hb), through which hemoglobin (Hb) O(2) desaturation is coupled to regional increases in blood flow in vivo (hypoxic vasodilation). Five hundred ml of blood from each of 15 healthy volunteers was processed into leukofiltered, additive solution 3-exposed RBCs and stored at 1-6 degrees C according to AABB standards. Blood was subjected to 26 assays at 0, 3, 8, 24 and 96 h, and at 1, 2, 3, 4, and 6 weeks. RBC SNO-Hb decreased rapidly (1.2 x 10(-4) at 3 h vs. 6.5 x 10(-4) (fresh) mol S-nitrosothiol (SNO)/mol Hb tetramer (P = 0.032, mercuric-displaced photolysis-chemiluminescence assay), and remained low over the 42-day period. The decline was corroborated by using the carbon monoxide-saturated copper-cysteine assay [3.0 x 10(-5) at 3 h vs. 9.0 x 10(-5) (fresh) mol SNO/mol Hb]. In parallel, vasodilation by stored RBCs was significantly depressed. RBC deformability assayed at a physiological shear stress decreased gradually over the 42-day period (P < 0.001). Time courses vary for several storage-induced defects that might account for recent observations linking blood transfusion with adverse outcomes. Of clinical concern is that SNO levels, and their physiological correlate, RBC-dependent vasodilation, become depressed soon after collection, suggesting that even "fresh" blood may have developed adverse biological characteristics.

1 Follower
 · 
151 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transfusion of blood remains the gold standard for fluid resuscitation from hemorrhagic shock. Hemoglobin (Hb) within the red blood cell transports oxygen and modulates nitric oxide (NO) through NO scavenging and nitrite reductase. This study was designed to examine the effects of incorporating a novel NO modulator, RRx-001, on systemic and microvascular hemodynamic response after blood transfusion for resuscitation from hemorrhagic shock in a hamster window chamber model. In addition, to RRx-001 the role of low dose of nitrite (1 × 10(-9) moles per animal) supplementation after resuscitation was studied. Severe hemorrhage was induced by arterial controlled bleeding of 50% of the blood volume (BV) and the hypovolemic state was maintained for 1 h. The animals received volume resuscitation by an infusion of 25% of BV using fresh blood alone or with added nitrite, or fresh blood treated with RRx-001 (140 mg/kg) or RRx-001 (140 mg/kg) with added nitrite. Systemic and microvascular hemodynamics were followed at baseline and at different time points during the entire study. Tissue apoptosis and necrosis were measured 8 h after resuscitation to correlate hemodynamic changes with tissue viability. Compared to resuscitation with blood alone, blood treated with RRx-001 decreased vascular resistance, increased blood flow and functional capillary density immediately after resuscitation and preserved tissue viability. Furthermore, in RRx-001 treated animals, both mean arterial pressure (MAP) and met Hb were maintained within normal levels after resuscitation (MAP >90 mmHg and metHb <2%). The addition of nitrite to RRx-001 did not significantly improve the effects of RRx-001, as it increased methemoglobinemia and lower MAP. RRx-001 alone enhanced perfusion and reduced tissue damage as compared to blood; it may serve as an adjunct therapy to the current gold standard treatment for resuscitation from hemorrhagic shock.
    Asian Journal of Transfusion Science 01/2015; 9(1):55. DOI:10.4103/0973-6247.150952
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transfusion of packed red blood cells (PRBCs) is associated with an increased incidence of nosocomial infections and an increased risk of death. The duration of storage before transfusion may influence these outcomes. Here, we explore the association between the age of transfused PRBCs and specific patterns of inflammatory gene expression in severely injured trauma patients. Severely injured trauma patients requiring intensive care unit treatment and receiving transfusion of PRBCs within 24 hours of the injury were recruited. Blood samples were obtained within 2 hours of the trauma, at 24 hours, and at 72 hours. Messenger RNA was extracted from whole blood, and gene expression was quantified using quantitative polymerase chain reaction. The median age of the units of PRBCs transfused to each patient was recorded. The primary outcome measure was the change in candidate gene expression over the initial 72 hours. Sixty-four patients were studied. Fifty-three patients (83%) were male, and the median age was 40.5 years (interquartile range [IQR], 31-59). Median Injury Severity Score (ISS) was 31.5 (IQR, 23-43), and 55 patients (86%) experienced a blunt injury. Forty-one patients (64%) developed a nosocomial infection, and 15 patients (23%) died before hospital discharge. Each patient received a median of 5 U of PRBCs (IQR, 4-9.8 U) during the first 24 hours of hospital admission. The median age of the units of PRBCs transfused in each patient was 20 days (IQR, 17-22 days). Older blood was associated with greater decreases in interleukin 12 (IL-12), IL-23, and RORγt (all p's < 0.05) gene expression over the initial 24 hours, greater decreases in IL-12 gene expression over 72 hours, and a rise in transforming growth factor β gene expression over the first 72 hours. A multivariate analysis confirmed the independence of these associations. Increasing the duration of storage of PRBCs before transfusion is associated with a pattern of gene expression consistent with more severe immunosuppression. Epidemiologic study, level III.
    Journal of Trauma and Acute Care Surgery 03/2015; 78(3):535-42. DOI:10.1097/TA.0000000000000534 · 1.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The reliability and accuracy of five portable blood lactate (BLa) analysers (Lactate Pro, Lactate Pro2, Lactate Scout+, Xpress™, and Edge) and one handheld point-of-care analyser (i-STAT) were compared to a criterion (Radiometer ABL90). Two devices of each brand of analyser were assessed using 22 x 6 mL blood samples taken from five subjects at rest and during exercise who generated lactate ranging ~1-23 mM. Each sample was measured simultaneously ~6 times on each device. Reliability was assessed as the within-sample standard deviation (wsSD) of the six replicates; accuracy as the bias compared with the ABL90; and overall error (the root mean squared error (√MSE)) was calculated as the square root of (wsSD(2) and bias(2)). The √MSE indicated that both the Edge and Xpress had low total error (~0-2 mM) for lactate concentrations <15 mM, whereas the Edge and Lactate Pro2 were the better of the portable analysers for concentrations >15 mM. In all cases, bias (negative) was the major contribution to the √MSE. In conclusion, in a clinical setting where BLa is generally <15 mM the Edge and Xpress devices are relevant, but for athlete testing where peak BLa is important for training prescription the Edge and Lactate Pro2 are preferred. Key pointsThe reliability of five common portable blood lactate analysers were generally <0.5 mM for concentrations in the range of ~1.0-10 mM.For all five portable analysers, the analytical error within a brand was much smaller than the biological variation in blood lactate (BLa).Compared with a criterion blood lactate analyser, there was a tendency for all portable analysers to under-read (i.e. a negative bias), which was particularly evident at the highest concentrations (BLa ~15-23 mM).The practical application of these negative biases would overestimate the ability of the athlete and prescribe a training intensity that would be too high.

Full-text (2 Sources)

Download
40 Downloads
Available from
May 29, 2014