Article

pH-sensitive polymer nanospheres for use as a potential drug delivery vehicle.

Research Center for Biomolecular Nanotechnology, Department of Life Science, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Buk-gu, Gwangju, Republic of Korea.
Biomacromolecules (Impact Factor: 5.37). 12/2007; 8(11):3401-7. DOI: 10.1021/bm700517z
Source: PubMed

ABSTRACT We report the development and characterization of pH-sensitive poly(2-tetrahydropyranyl methacrylate) [poly(THPMA)] nanospheres and demonstrate their feasibility as an effective drug delivery vehicle. Poly(THPMA) nanospheres were prepared using either the double emulsion or single emulsion method for the encapsulation of, respectively, water soluble (rhodamine B) or organic soluble (paclitaxel) payloads. The resulting nanospheres showed pH-dependent dissolution behavior, resulting in significant morphologic changes and loss of nanoparticle mass under mild acidic conditions (pH 5.1) with a half-life of 3.3 days, as compared to physiologic condition (pH 7.4) with a half-life of 6.2 days. The in vitro drug release profile of the paclitaxel-loaded poly(THPMA) nanospheres revealed that the rate of drug release in pH 5.1 acetate buffer was relatively faster than that in pH 7.4 HEPES buffer. Furthermore, poly(THPMA) nanospheres showed lower cytotoxicity and higher cellular uptake as compared to the FDA-approved PLGA-based nanospheres currently in clinical practice.

0 Bookmarks
 · 
125 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: A series of well-defined amphiphilic comb poly (ether amine)s (acPEAs) were successfully synthesized through nucleophilic addition/ring-opening reaction of commercial available poly(propylene glycol) (PPO) diglycidyl ether and Jeffamine L100, followed by esterification of hydroxyl groups in backbone by alkyl carboxylic acid with different chain length. acPEAs are comprised of hydrophilic short PEO chains and hydrophobic alkyl chains as comb chains, which are grafted on PPO backbone alternately to form well-defined structure. With the very low critical micelle concentration (CMC) of around 3.0 × 10−3 g/L, the obtained acPEAs can self-assemble into stable nanomicelles, whose aggregation is responsive to temperature, pH, and ionic strength with tunable cloud point (CP). The CP of acPEAs' aqueous solution increases with the decrease of the length of graft alkyl chains, the decrease of pH value, and the decrease of ionic strength. A transition behavior in the responsive aggregation of micelles formed by acPEA8 and acPEA10 in aqueous solution, especially at low pH value (
    Journal of Polymer Science Part A Polymer Chemistry 01/2010; 48(15):3468-3475. · 3.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The possibility to control the fate of the cells responsible of secondary mechanisms following spinal cord injury (SCI) is one of the most relevant challenges to reduce the post traumatic degeneration of the spinal cord. In particular, microglia/macrophages associated inflammation appears to be a self-propelling mechanism which leads to progressive neurodegeneration and development of persisting pain state. In this study we analyzed the interactions between poly(methyl methacrylate) nanoparticles (PMMA-NPs) and microglia/macrophages in vitro and in vivo, characterizing the features that influence their internalization and ability to deliver drugs. The uptake mechanisms of PMMA-NPs were in-depth investigated, together with their possible toxic effects on microglia/macrophages. In addition, the possibility to deliver a mimetic drug within microglia/macrophages was characterized in vitro and in vivo. Drug-loaded polymeric NPs resulted to be a promising tool for the selective administration of pharmacological compounds in activated microglia/macrophages and thus potentially able to counteract relevant secondary inflammatory events in SCI.
    Journal of Controlled Release 11/2013; · 7.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: New type of hydrogel nanoparticles (HNp) based on chitosan are synthesized by the free radical graft-copolymerization reaction of peroxide containing chitosan derivative and 1-vinyl-2-pyrrolidone (VP) in the inverse miniemulsion droplets. Free radicals are formed upon thermal decomposition of the peroxide groups that are attached to the chitosan chain. After introduction of the cross-linker N,N-methylenebisacrylamide, more densely cross-linked HNp with a lower pH-dependant swelling rate are produced. The release behavior is investigated by fluorescence measurements using HNp loaded with either anionic sulforhodamine 101 or cationic rhodamine 123 fluorescent dye. The obtained results revealed that the crucial points in the release kinetic are the nature of used “payload” molecules and their interaction with the hydrogel matrix. Synthesized HNp are of potential interest for diverse biomedical applications including controlled drug release and diagnostic.
    Macromolecular Bioscience 04/2014; · 3.74 Impact Factor