eggNOG: automated construction and annotation of orthologous groups of genes

European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
Nucleic Acids Research (Impact Factor: 8.81). 02/2008; 36(Database issue):D250-4. DOI: 10.1093/nar/gkm796
Source: PubMed

ABSTRACT The identification of orthologous genes forms the basis for most comparative genomics studies. Existing approaches either lack functional annotation of the identified orthologous groups, hampering the interpretation of subsequent results, or are manually annotated and thus lag behind the rapid sequencing of new genomes. Here we present the eggNOG database ('evolutionary genealogy of genes: Non-supervised Orthologous Groups'), which contains orthologous groups constructed from Smith-Waterman alignments through identification of reciprocal best matches and triangular linkage clustering. Applying this procedure to 312 bacterial, 26 archaeal and 35 eukaryotic genomes yielded 43 582 course-grained orthologous groups of which 9724 are extended versions of those from the original COG/KOG database. We also constructed more fine-grained groups for selected subsets of organisms, such as the 19 914 mammalian orthologous groups. We automatically annotated our non-supervised orthologous groups with functional descriptions, which were derived by identifying common denominators for the genes based on their individual textual descriptions, annotated functional categories, and predicted protein domains. The orthologous groups in eggNOG contain 1 241 751 genes and provide at least a broad functional description for 77% of them. Users can query the resource for individual genes via a web interface or download the complete set of orthologous groups at

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The only animal cells known that can maintain functional plastids (kleptoplasts) in their cytosol occur in the digestive gland epithelia of sacoglossan slugs. Only a few species of the many hundred known can profit from kleptoplasty during starvation long-term, but why is not understood. The two sister taxa Elysia cornigera and Elysia timida sequester plastids from the same algal species, but with a very different outcome: while E. cornigera usually dies within the first two weeks when deprived of food, E. timida can survive for many months to come. Here we compare the responses of the two slugs to starvation, blocked photosynthesis and light-stress. The two species respond differently, but in both starvation is the main denominator that alters global gene-expression profiles. The kleptoplasts’ ability to fix CO2 decreases at a similar rate in both slugs during starvation, but only E. cornigera individuals die in the presence of functional kleptoplasts, concomitant with the accumulation of reactive oxygen species (ROS) in the digestive tract. We show that profiting from the acquisition of robust plastids, and key to E. timida's longer survival, is determined by an increased starvation tolerance that keeps ROS levels at bay.
    Proceedings of the Royal Society B: Biological Sciences 01/2015; DOI:10.1098/rspb.2014.2519 · 5.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Celery of the family Apiaceae is a biennial herb that is cultivated and consumed worldwide. Lignin is essential for cell wall structural integrity, stem strength, water transport, mechanical support, and plant pathogen defense. This study discussed the mechanism of lignin formation at different stages of celery development. The transcriptome profile, lignin distribution, anatomical characteristics, and expression profile of leaves at three stages were analyzed. Regulating lignin synthesis in celery growth development has a significant economic value. Celery leaves at three stages were collected, and Illumina paired-end sequencing technology was used to analyze large-scale transcriptome sequences. From Stage 1 to 3, the collenchyma and vascular bundles in the petioles and leaf blades thickened and expanded, whereas the phloem and the xylem extensively developed. Spongy and palisade mesophyll tissues further developed and were tightly arranged. Lignin accumulation increased in the petioles and the mesophyll (palisade and spongy), and the xylem showed strong lignification. Lignin accumulation in different tissues and at different stages of celery development coincides with the anatomic characteristics and transcript levels of genes involved in lignin biosynthesis. Identifying the genes that encode lignin biosynthesis-related enzymes accompanied by lignin distribution may help elucidate the regulatory mechanisms of lignin biosynthesis in celery.
    Scientific Reports 02/2015; 5:8259. DOI:10.1038/srep08259 · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ammonium is the main inorganic nitrogen source in paddy soil. Rice (Oryza sativa), an ammonium-preferring and -tolerant grain crop, is a valuable resource for researching ammonium-uptake mechanism and understanding the molecular networks that the plant copes with ammonium variation. To generate a broad survey of early responses affected by varied ammonium supplies in rice, RNA samples were prepared from the roots and shoots of rice plants subjected to nitrogen-free (0mM ammonium), 1mM ammonium and high ammonium (10mM ammonium) for a short period of 4h (1mM ammonium treatment as the control), respectively, and the transcripts were sequenced using the Illumina/HiSeq™ 2000 RNA sequencing (RNA-Seq) platform. By comparative analysis, 394 differentially expressed genes (DEGs) were identified in roots, among which, 143 and 251 DEGs were up- and down-regulated under nitrogen-free condition, respectively. In shoots, 468 (119 up-regulated/349 down-regulated) DEGs were found under such condition. However, with high ammonium treatment, only 63 genes (6 up-regulated/57 down-regulated) in roots and 115 genes in shoots (93 up-regulated/22 down-regulated) were differentially expressed. According to KEGG analysis, when exposed to nitrogen-free condition, DEGs participating in the carbohydrate and amino acid metabolisms were down-regulated (with 1 exception) in roots as well as in shoots, implying reduced carbohydrate and nitrogen metabolisms. Under high ammonium supply, all DEGs associated with carbohydrate and amino acid metabolisms were down-regulated in roots and to the contrary, up-regulated in shoots. Aldehyde dehydrogenase (ALDH, NAD(+)) [EC:] seemed to have played an important role in rice shoots under high ammonium condition, analysis results implicated a coordinative regulation of carbohydrate with amino acid metabolisms under nitrogen deficiency as well as the high ammonium conditions during a short period of several hours in rice. Moreover, transcripts with abundance variation might be precious gene resources in responding to different ammonium supplies in rice. Copyright © 2014. Published by Elsevier B.V.
    Gene 11/2014; 555(2). DOI:10.1016/j.gene.2014.11.021 · 2.20 Impact Factor

Full-text (3 Sources)

Available from
May 17, 2014